首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Semi1 and semi2 interpenetrating polymer networks of poly(vinyl chloride) PVC and in situ formed poly(butyl acrylate) (PBA) have been synthesized and characterized using diallyl phthalate (DAP) and ethylene glycol dimethacrylate (EGDM) as the crosslinkers of PVC and PBA, respectively. These two types of IPNs have been compared with respect to their mechanical and thermal properties. The semi1 IPNs displayed a decrease in their mechanical parameters and the physical properties as well, while in contrast, the semi2 IPNs exhibited a marginal increase in the corresponding values when compared to the crosslinked PVC in the case of semi1 IPN and linear PVC in case of semi2 IPN. The representative samples of semi1 and semi2 IPNs revealed a two‐stage‐degradation typical of PVC while confirming the increased stability of the samples with higher onset temperature of degradation. The softening characteristics as detected by thermomechanical analysis are in conformity with their mechanicals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Semi and full interpenetrating network (IPN) hydrogels were synthesized by allowing free radical copolymerization of acrylic acid (AA) and hydroxyethyl methacrylate (HEMA) in the matrix of polyvinyl alcohol (PVOH). Accordingly, four different semi IPN hydrogels were prepared with PVOH: copolymer mass ratio of 1 : 1, 1 : 0.75, 1 : 0.5, and 1 : 0.25. These hydrogels were designated as SEMIIPN1, SEMIIPN2, SEMIIPN3, and SEMIIPN4, respectively. In all of these SEMIIPN, after polymerization PVOH was crosslinked with 2 mass % glutaraldehyde to form the semi IPN structure. In a similar way, sequential full IPN were prepared from PVOH and copolymer of AA and HEMA (designated as PAAHEMA) with same composition except in this case apart from crosslinking of PVOH by 2 mass % glutaraldehyde the PAAHEMA copolymer was further crosslinked with N,N′‐methylenebisacrylamide (NMBA) to produce four full IPN hydrogels designated as FULLIPN1, FULLIPN2, FULLIPN3, and FULLIPN4. All of these semi and full IPN type hydrogels were characterized by carboxylic %, FTIR, UV, DTA‐TGA, XRD, SEM, and mechanical properties. The network parameters, swelling and diffusion characteristics of these hydrogels were also studied. The performance of these semi and full IPNs were compared in terms of their relative abilities for removing varied concentration of rhodamine B (RB) and methyl Violet (MV) dyes from water. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Biodegradable crosslinked biopolyesters and interpenetrating networks (IPN) were prepared with poly(cardanol fumarate) (MCFR) and poly(castor oil fumarate) (CFR). In addition, polymerization and crosslinking with styrene-free vinyl monomers, vinyl acetate (VA), and n-vinyl pyrrolidone (VP) were adopted to prepare these materials. The IPNs have higher thermal stability and mechanical properties in comparison with the crosslinked biopolyesters. The improved characteristics of IPNs are due to the synergistic effect of physical and chemical crosslinking. These IPNs undergo gradual degradation in various media in comparison with crosslinked biopolyesters.  相似文献   

5.
The modification of porous PVC particles by an insitu stabilizer‐free polymerization/crosslinking of a monomer/crosslinker/peroxide solution absorbed within the PVC particles is presented. The modifying crosslinked polymers are polystyrene (PS) crosslinked with DVB (divinyl benzene), polymethyl methacrylate (PMMA) crosslinked with ethylene glycol dimethacrylate (EGDMA), and styrene‐MMA copolymer crosslinked with DVB. The modified PVC particles characterization includes polymerization yield, non‐extractables, 13C solid‐state CPMAS NMR, porosity measurements and also morphology and dynamic mechanical behavior (DMTA). The levels of nonextractable fractions found and 13C solid‐state CPMAS NMR results are indicative of low chemical interaction in the semi‐IPN PVC particles. Particle porosity levels and SEM observations indicate that styrene and MMA mainly polymerize within the PVC particles' bulk and just small amounts in the pores. MMA polymerization in the PVC pores is as crusts covering the PVC pore surfaces, whereas styrene polymerization in the PVC pores is by filling the pores. Dynamic mechanical studies show that tanδ and the storage modulus curves are influenced by the incorporation of PS and XPS but not by the incorporation of PMMA and XPMMA.  相似文献   

6.
Full and semi interpenetrating polymer networks (IPNs) based on phenol‐formaldehyde resin (Novolac) and poly(methyl methacrylate) have been made by in situ sequential technique of IPN formation. These systems of different compositions were characterized with respect to their mechanical properties, such as, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Extent of phase mixing of the two polymers was envisaged from the micrographs obtained by polarizing light microscopy (PLM). The effects of variation of the blend ratios on the above‐mentioned properties were examined. There was a decreasing trend of modulus and UTS with consequent increases in elongation at break and toughness for both types of IPNs with increase in proportions of PMMA. Lowering of glass transition temperatures (with respect to pure crosslinked Novolac resin) of the IPNs with increasing proportions of PMMA was observed, indicating a plasticizing influence of PMMA on the rigid and brittle matrix of phenolic resin. The TGA thermograms exhibit lowering in thermal stability of the IPNs with respect to pure phenolic resin in the regions of higher temperatures. With increase in proportion of PMMA the onset of degradation of the IPNs is shifted towards lower temperature zone. The surface morphology as revealed by PLM indicates distribution of discrete domains of PMMA in the phenolic resin matrix. The two phase interfaces are quite sharp at higher concentrations of PMMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2764–2774, 2004  相似文献   

7.
The thermodynamic miscibility and thermal and dynamic mechanical behaviour of semi‐interpenetrating polymer networks (semi‐IPNs) of crosslinked polyurethane (PU) and linear poly(hydroxyethyl methacrylate) (PHEMA) have been investigated. The free energies of mixing of the semi‐IPN components have been determined by the vapour sorption method and it was established that the parameters are positive and depend on the amount of PHEMA in the semi‐IPN samples. Thermal analyses glass transition temperatures evidenced two in the semi‐IPNs in accordance with the investigation of the thermodynamic miscibility of these systems. Dynamic mechanical analysis revealed a pronounced change in the viscoelastic properties of the PU‐based semi‐IPNs with different amounts of PHEMA in the samples. The semi‐IPNs have two distinct tan δ maxima related to the relaxations of the two polymers in their glass temperature domains. The temperature position of PU relaxation maximum tan δ is invariable but its amplitude decreases in the semi‐IPNs with increasing amount of PHEMA in the systems. The tan δ maximum of PHEMA is shifted to a lower temperature and its amplitude decreases with increasing amount of PU in the semi‐IPNs. The segregation degree of components α was calculated using the viscoelastic properties of semi‐IPNs. It was concluded that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The different levels of immiscibility lead to the different degree of phase separation in the semi‐IPNs with compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
The thermal, dynamic mechanical, and mechanical properties and morphology of two series of semi‐interpenetrating polymer networks (s‐IPNs) based on linear poly(vinyl acetate) (PVAc) and a crosslinked n‐butyl acrylate/1,6‐hexanediol diacrylate copolymer were investigated. The s‐IPN composition was varied with different monoacrylate/diacrylate monomer ratios and PVAc concentrations. The crosslinking density deeply affected the thermal behavior. The results showed that a more densely crosslinked acrylate network promoted phase mixing and a more homogeneous structure. The variation in the linear polymer concentration influenced both the morphology and mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The thermal, dynamic mechanical analysis, morphology and mechanical properties of semi‐interpenetrating polymer networks based on crosslinked polyurethane (PU) and poly(2‐hydroxyethyl methacrylate) (PHEMA) synthesized by photopolymerization and by thermopolymerization have been investigated. The thermal analysis has evidenced the two glass temperature transitions in the semi‐IPNs and this is confirmed by the thermodynamic miscibility investigation of the systems. The Dynamic Mechanical Analysis spectra have shown that the phase separation is more significant in the thermopolymerized semi‐IPNs: the tan δ peaks of constituent polymers are more distinct and the minimum between the two peaks is deeper. The calculated segregation degree values of semi‐IPN's components are significantly higher for thermopolymerized semi‐IPNs, thereby the process of phase separation in the thermopolymerized semi‐IPNs is more developed. The structures of two series of samples investigated by SEM are completely different. The mechanical properties reflect these changes in structure of semi‐IPNs with increasing amount of PHEMA and with the changing of the method of synthesis. The results suggest that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The semi‐IPN samples with early stage of phase separation demonstrate higher mechanical characteristics. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(butyl methacrylate) (PBMA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PBMA, respectively. These were then characterized with reference to their mechanical, thermal, and morphological properties. The mechanical and thermal characteristics revealed modification over the unmodified polymeric systems in relation to their phase morphologies. The semi‐1 IPNs displayed a decrease in their mechanical parameters of modulus and UTS while semi‐2 IPNs exhibited a marginal increase in these two values. The semi‐1 IPNs, however, also revealed a decrease in the elongation and toughness values away from the normal behavior. The thermomechanical behavior of both the systems is in conformity with their mechanicals in displaying the softening characteristics of the system and stabilization over unmodified PVC. The DSC thermograms are also correlated to these observations along with the heterogeneous phase morphology which is displayed by both the systems especially at higher concentration of PBMA incorporation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Resol was solution‐blended with vinyl acetate‐2‐ethylhexyl acrylate (VAc–EHA) resin in an aqueous medium, in varying weight fractions, with hexamethoxymethylmelamine (HMMM) as a crosslinker and the data were compared with a control. The present work was aimed to obtain an optimum combination of high‐temperature resistance by synthesis of an interpenetrating network (IPN) of the resins. The control gave a semi‐IPN system, in which the resol crosslinked, while the acrylic did not, whereas the blend, where HMMM was the crosslinker, gave a full‐IPN system. FTIR spectra of the blends of resol/VAc–EHA/HMMM indicated the formation of new stretching, which was generated due to crosslinking reactions among VAc–EHA and the crosslinker HMMM. TGA showed that, with an increase in the VAc–EHA percent in semi‐IPNs, the decomposition temperature decreased gradually, whereas in case of full‐IPNs, the decomposition temperature increased with increase in the VAc–EHA percent. However, the full‐IPNs had a higher decomposition temperature than that of the semi‐IPNs, at the same resol/(VAc–EHA) ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3581–3588, 2002  相似文献   

12.
To reduce the highly hydrophilic property of chondroitin sulfate (ChS), a semi‐interpenetrating polymer network (semi‐IPN) of chondroitin sulfate/polyacrylic acid (PAA) was prepared as a drug carrier by crosslinking acrylic acid with diethyleneglycol diacrylate. The swelling properties of the semi‐IPNs with different concentrations of crosslinking agent were correlated. The moisture sorption profiles were evaluated using differential thermal analysis. Ketoprofen was used as a drug probe to evaluate the performance of the drug released from the semi‐IPN matrices. The prepared semi‐IPNs demonstrated significant swelling reduction properties with both gastric and intestinal fluids compared with those of both the pure ChS and the ChSAA blend without the crosslinking agent. The amount of accumulated drug released from the semi‐IPNs was less than 30 wt % at pH 1.2 and up to 80 wt % at pH 7.4. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 114–122, 2002  相似文献   

13.
Hydrogels are polymer networks swollen in water. Because of their soft and wet nature, and their ability to show large volume changes, hydrogels can be useful in many biomedical and actuator applications. In these applications, it is crucial to tune the mechanical and physical properties of a hydrogel in a controllable manner. Here, interpenetrating polymer networks (IPNs) made of a covalently crosslinked network and an ionically crosslinked network were produced to investigate the effective parameters that control the physical and mechanical properties of an IPN hydrogel. Covalently crosslinked polyacrylamide (PAAm) or poly(acrylic acid) (PAA) networks were produced in the presence of alginate (Alg) that was then ionically crosslinked to produce the IPN hydrogels. The effect of ionic crosslinking, degree of covalent crosslinking, AAm : Alg and AA : Alg ratio on the swelling ratio, tensile properties, indentation modulus, and fracture energy of IPN hydrogels was studied. A hollow cylindrical hydrogel with gradient mechanical properties along its length was developed based on the obtained results. The middle section of this hydrogel was designed as a pH triggered artificial muscle, while each end was formulated to be harder, tougher, and insensitive to pH so as to function as a tendon‐like material securing the gel muscle to its mechanical supports. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2504–2513, 2013  相似文献   

14.
The curing behavior and physical properties of dicyanate/polyetherimide (PEI) semi‐interpenetrating polymer network (IPN) systems were investigated. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/PEI semi‐IPN systems. The curing rate of the semi‐IPN system decreased as the PEI content increased. An autocatalytic reaction mechanism can describe well the curing kinetics of the semi‐IPN systems. The reaction kinetic parameters were determined by fitting DSC conversion data to the kinetic equation. The glass transition temperature of the semi‐IPNs decreased with increasing PEI content. Two glass transitions due to phase‐separated morphology were observed for the semi‐IPN containing over 15 phr (parts per hundred parts of dicyanate resin) PEI. The thermal stability and dynamic mechanical properties of the semi‐IPNs were measured by thermal analysis.  相似文献   

15.
Semi‐ and full‐interpenetrating polymer networks (IPNs) were prepared using polyurethane (PUR) produced from a canola oil‐based polyol with primary terminal functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were studied and compared using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and tensile measurements. The morphology of the IPNs was investigated using atomic force microscopy (AFM). Semi‐IPNs demonstrated different thermal mechanical properties, mechanical properties, phase behavior, and morphology from full IPNs. Both types of IPNs studied are two‐phase systems with incomplete phase separation. However, the extent of phase separation is significantly more advanced in the semi‐IPNs compared with the full IPNs. All the semi‐IPNs exhibited higher values of elongation at break for all proportions of acrylate to polyurethane compared with the corresponding full IPNs. These differences are mainly due to the fact that in the case of semi‐IPNs, one of the constituting polymers remains linear, so that it exhibits a loosely packed network and relatively high mobility, whereas in the case of full IPNs, there is a higher degree of crosslinking, which restricts the mobility of the chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Interpenetrating polymer networks (IPN) of novolac/poly (2‐ ethyl hexyl acrylate) (PEHA) have been prepared via in situ sequential technique of IPN formation. Full and semi‐IPNs were prepared with different blend ratios (w/w) e.g., 90 : 10, 80 : 20, and 70 : 30 in which the major constituent was novolac resin. A gradual decrease in specific gravity and hardness values was observed with increase in PEHA incorporation. A steady decrease in crosslink density with increase in PEHA fraction in the IPNs was quite evident. The IPNs were characterized with respect to their mechanical properties, e.g., ultimate tensile strength, percentage elongation at break, modulus, and toughness. Thermal behavior was studied by differential scanning calorimetry and thermogravimetric analysis. A plasticizing influence of PEHA on the rigid, brittle, and hard matrix of crosslinked phenolic resin is evidenced from the mechanical and thermal properties. The two‐phase surface morphology is revealed by scanning electron microscope. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate) (PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below Tg of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K, complex spectra were obtained with the slow component mostly arising out of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into the highly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentioned semi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in α-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the Tg regions were also calculated. T50G was found to correlate with the Tg of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm3. C-13 T measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer - sized morphology in the case of highly crosslinked semi IPN.  相似文献   

18.
A series of novel sulfonated polyimide (SPI)/crosslinked poly(N‐isopropylacrylamide) (cPNIPAm) semi‐interpenetrating polymer networks (semi‐IPNs) were synthesized as the proton exchange membranes for direct methanol fuel cells via in situ polymerization. The micromorphology and properties of the semi‐IPN membranes were characterized. The results indicated that the hydrogen bonds between cPNIPAm and SPI in the semi‐IPN structure were a crucial factor for regulating the micromorphology, proton conductivity and other properties of the semi‐IPN membranes. A more uniform sulfonic ionic cluster distribution was observed in the membrane of SPI‐20‐cPNIPAm with equimolar ratio of sulfonic acid groups and amido bonds, which could provide effective proton transport channels. The SPI‐20‐cPNIPAm exhibited a maximum proton conductivity of 0.331 S cm?1 at 80 oC (relative humidity 100%), an optimal selectivity of 8.01 × 105 S s cm?3 and an improved fuel cell performance of 72 mW cm?2 compared with both pristine SPI and other semi‐IPN membranes. The SPI‐20‐cPNIPAm semi‐IPN membranes also retained good mechanical properties and thermal stabilities on the whole. © 2014 Society of Chemical Industry  相似文献   

19.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   

20.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号