首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过溶液燃烧法成功合成了一系列非活性K+掺杂的尖晶石型(KxCoCrFeMnNi)(3/(5+x))O4(x=0,0.5,1,1.5)高熵氧化物锂离子电池负极材料,系统研究了K+掺杂对结构和储锂性能的影响。结果表明:随着K+掺杂量的增加,均可制备出具有单一尖晶石结构的纳米晶粉体材料,其中等摩尔K+掺杂的(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4高熵氧化物负极材料具有最高的比容量、优异的循环稳定性和倍率性能。(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4<...  相似文献   

2.
采用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Ni0.18Mn0.58Cr0.04O2,并利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对材料的晶体结构、形貌和电化学性能进行了表征。结果表明:掺Cr3+后材料的阳离子混排程度降低,层状结构更为规整,电化学性能明显优于Li1.2Mn0.6Ni0.2O2,其0.2C和1C首次放电容量分别为262.2 mAh/g和241.7 mAh/g,1C倍率下循环50次的容量保持率为95.5%。  相似文献   

3.
高熵氧化物是一种由高构型熵稳定的新型材料,有望具有独特的电化学性能。采用聚丙烯酰胺凝胶法制备了(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O纳米粉体并研究了其超级电容性能。结果表明:单相(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O纳米粉体的制备温度随着丙烯酰胺/金属阳离子摩尔比的增加而降低。当丙烯酰胺/金属阳离子摩尔比为120:1时,在900℃煅烧2 h所制备的岩盐相高熵纳米粉体呈现出球形形态,粒径为40~65 nm。该高熵纳米粉体在1 A/g的电流密度下具有402 F/g的比电容;当电流密度增大到20 A/g时,仍然能保持62%的初始比电容;在电流密度为5 A/g时,经过2 000次充放电循环后,电容保持率为61%,该研究表明高熵(Mg0.2Co0.2Ni0.2Cu0.2...  相似文献   

4.
采用固相反应法制备了单相块体(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4高熵尖晶石陶瓷。结合X射线衍射,扫描电子显微镜和能谱仪对制备过程中的物相组成、显微结构和元素分布进行分析。随烧结温度的升高陶瓷材料体积密度增大,气孔率降低,1 200℃烧结所得致密高熵尖晶石陶瓷材料呈单相,元素均匀分布,其弯曲强度和断裂韧性分别达43.00 MPa和1.30 MPa·m1/2。所制备高熵尖晶石陶瓷对电磁波兼具介电损耗和磁损耗能力,其在3.0 mm处可获得最大的有效吸收带宽为12.37 GHz,是具有一定承载能力和优异宽频吸波性能的陶瓷材料。  相似文献   

5.
以氢氧化物前驱体Ni0.32Co0.04Mn0.44(OH)2和LiOH·H2O为原料,采用煅烧技术制备了单晶二次球形富锂锰基正极材料Li1.2Ni0.32Co0.04Mn0.44O2;以KCl为烧结助剂和掺杂物,制备了不同KCl摩尔分数的富锂锰基正极材料Li1.2-xKxNi0.32Co0.04Mn0.44O2-xClx(x分别为0.01、0.02、0.03、0.04)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱技术(XPS)、选择区域电子衍射(SEAD)、充放电测试、CV测试和EIS测试对材料结构和电化学性能进行表征,探究了不同氯化钾掺杂量对材料电化学性能的影响。结果表明,熔融的KCl不但...  相似文献   

6.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li1.2Ni0.16Mn0.56Cr0.08O2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g-1增加到246.6 mA·h·g-1,在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g-1增加到104.2 mA·h·g-1。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

7.
采用柠檬酸络合法制备LaNixFe1-xO3(x分别为0.33、0.5、0.66)和La1-yCeyNi0.66Fe0.33O3(y分别为0.1、0.2、0.3、0.4)系列钙钛矿催化剂。利用X射线衍射(XRD)、扫描电镜(SEM)、N2物理吸附对催化剂的基本性质进行表征,通过固定床实验装置进行模拟煤气催化实验和荒煤气原位催化实验。催化剂的B位Ni和Fe主要起催化作用,A位的La和Ce主要起稳定晶体结构的作用。结果表明,系列催化剂均可形成稳定的钙钛矿结构,B位Ni质量分数的提高有助于提升CO的转化率和催化剂的积碳速率,并同时降低了催化剂的比表面积和孔体积。A位掺杂Ce能够增加催化剂的晶氧空位,改变催化剂的晶体结构,提高催化剂的比表面积、孔体积、抗硫性能和抗积碳性能。对比原位催化减水效果发现,LaNixFe1-xO3系列催化剂中...  相似文献   

8.
张睿  吴元欣  何云蔚  艾常春 《化工学报》2015,66(8):3177-3182
采用氢氧化物共沉淀法制备了锂离子电池正极材料前驱体(Ni0.5Co0.2Mn0.3)(OH)2,并用流变相反应法合成了Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池正极材料。运用X射线粉末衍射和恒电流充放电对产物进行了结构和电化学性能的表征,结果表明Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2具有标准的层状α-NaFeO2结构,样品为1 μm左右的片状一次颗粒聚集而成的类球形二次颗粒。掺杂1%(质量分数)Li3PO4的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池在0.1C的倍率下首次放电比容量达到188.6 mA·h·g-1(2.2~4.6 V vs Li+/Li),30次循环后容量保持率为 92.9%。循环伏安、交流阻抗测试表明Li3PO4的掺杂可减少充放电过程中电解液和电极之间的电荷传递电阻和锂离子扩散电阻,减小极化作用,从而提升了Li(Ni0.5Co0.2Mn0.3)O2材料的电化学性能。  相似文献   

9.
钠离子电池因环境友好、储量丰富等优势,成为锂离子电池的后继者,在储能材料方面有很大的应用潜力。针对钠离子电池锰基正极材料存在结构不稳定、循环稳定性差等问题,采用溶胶-凝胶法制备Na0.7Fex Mn((1-x))O2(00.7Fex Mn((1-x))O2材料微观结构、电化学性能的影响。结果表明:铁的掺杂稳定了材料P2相晶型且增加了钠层间距;合成的两种材料Na0.7Fe0.2Mn0.8O2和Na0.7Fe0.35Mn0.65O2在电压范围为2~4 V、放电倍率为0.5C的条件下,首次充/放电比容量分别为88.54、63.73 mA·h/g和74.02、49.01 mA·h/g,循环...  相似文献   

10.
氮化硅(Si3N4)陶瓷具有广泛的工业应用潜力,但其硬度和断裂韧性往往难以兼顾,这会限制到 Si3N4陶瓷的应用。为了获得兼具高硬度和高韧性的 Si3N4陶瓷,以高熵硼化物(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2为添加剂,使用放电等离子烧结法在1 600 ℃制备了 Si3N4陶瓷材料。研究了(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2对 Si3N4陶瓷的相组合、致密度、显微组织和力学性能的影响。结果表明:与未添加(Hf0.2Zr0.2...  相似文献   

11.
采用真空感应熔炼的方法制备了(La,Mg)1-xZrx Ni3.3-2xMn2x(x=0、0.1、0.2)储氢合金,研究了Zr/Mn元素替代和退火处理对储氢合金相结构、显微形貌和电化学性能的影响。结果表明:Zr/Mn元素替代后储氢合金中出现了新相La Mg Ni4相,退火处理后储氢合金中La Ni5相和La Mg Ni4相含量减小,(La,Mg)2Ni7相和(La,Mg)5Ni19相含量增加;当储氢合金中x值从0增加至0.2时,储氢合金电极的活化次数Na逐渐减小、最大放电容量Cmax逐渐降低,且相同x值时退火态储氢合金电极的Cmax要高于铸态储氢合金电极。Zr/Mn元素替代会提高储氢合金电极的24 h荷电保持率、降低循环100次后的容量保持率,且退火后二者都会相对提高;铸态储氢合金电...  相似文献   

12.
通过柠檬酸-EDTA络合法制备固体氧化物燃料电池阴极材料La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)粉体。以Sm0.2Ce0.8O1.9(SDC)为电解质,制备了LSCF/SDC/LSCF对称电极。采用浸渍法在LSCF/SDC/LSCF两侧浸渍La(NO3)3、Ni(NO3)2、Fe(NO3)3混合溶液,850℃烧结后得到表面修饰后的阴极材料。研究了浸渍烧结后表面修饰阴极材料的物相结构特征、电化学交流阻抗、电化学催化活性及单电池输出性能。结果表明:通过浸渍法在LSCF阴极表面形成了与LSCF结构相似的La0.62Sr0.38Ni0.03Co0.19Fe0.78O3-δ(LSNCF)固溶体,在表面产生的纳米颗粒提升了阴极材料对O2的吸附解离能力,并表现出较低的极化阻抗,在800℃时LSNCF阴极材料的极化面电阻为0.083Ω·cm2,在800℃连续工作7 200 min后,LSNCF阴极材料对称电池极化阻抗为0.117Ω·cm2。以Ni-SDC为阳极,SDC为电解质,LSNCF为阴极组装阳极支撑单电池,在750℃时最大功率密度为693 m W/cm2。  相似文献   

13.
采用固相燃烧法快速合成了LiNi0.08FexMn1.92-xO4(x≤0.08)正极材料,并探究了正极材料样品的结构、形貌、电化学性能及动力学性能。结果表明,Ni-Fe共掺没有改变LiMn2O4的立方尖晶石结构,促进了其晶体发育和{111}、{110}、{100}晶面的择优生长,部分颗粒形成了以高暴露{111}晶面为主和少量{110}、{100}晶面的截断八面体形貌。LiNi0.08Fe0.05Mn1.87O4样品在较低倍率(≤5 C)时,其倍率性能和长循环寿命得到显著提高,在25℃下,1 C的首次放电比容量为106.1 mAh/g, 1 000次循环后容量保持率为82.0%;5 C的首次放电比容量为100.1 mAh/g, 2 000次循环后容量保持率为72.8%。LiNi0.08Fe0.05Mn1.87  相似文献   

14.
周昊  伍其威  程方正 《化工学报》2021,72(10):5159-5171
采用火焰喷雾合成法制备了Sr2+、Cu2+分别取代A、B位的La0.8Sr0.2Mn1-xCuxO3x=0,0.1,0.2,0.3,0.4)钙钛矿催化剂,并用于CO催化氧化实验,研究了水蒸气和CO2对催化剂CO氧化活性的影响。对不同取代量La0.8Sr0.2Mn1-xCuxO3 催化剂进行了XRD、SEM、EDS、BET、XPS、H2-TPR和O2-TPD等表征测试。结果表明,火焰喷雾合成法制备的钙钛矿催化剂具有良好的钙钛矿相、疏松多孔结构和催化氧化活性。其中,La0.8Sr0.2Mn0.9Cu0.1O3分别在119.4℃和133.3℃实现50%和90%的CO转化率。掺杂水蒸气和CO2会与CO在催化剂表面形成竞争吸附,导致5种催化剂性能衰减,但La0.8Sr0.2Mn0.9Cu0.1O3仍能在150.2℃实现90%的CO催化转化,在连续稳定性催化氧化测试中,5种催化剂性能衰减不超过10%。结合上述CO催化氧化实验,火焰喷雾合成法制备的催化剂具有良好的稳定性和催化活性,适合制备高CO催化氧化活性的钙钛矿催化剂。  相似文献   

15.
采用La掺杂和固态电解质Li1.3Al0.3Ti1.7(PO4)3包覆对LiNi0.9Co0.05Mn0.05O2进行改性,研究掺杂和包覆对LiNi0.9Co0.05Mn0.05O2结构与性能的影响。结果表明:适量的La掺杂可以降低LiNi0.9Co0.05Mn0.05O2材料的离子迁移阻抗,提高Li+扩散系数,稳定材料的结构,从而提高材料的放电比容量及循环性能,当La掺杂量为0.1 wt%时,首次放电比容量为180.1 mAh·g-1,经过100次循环后的容量保持率高达93.34%,远高于未掺杂样品的86.20%。Li1.3Al0.3Ti1....  相似文献   

16.
以原位析出纳米Co–Fe颗粒的La0.4Sr0.6Co0.2Fe0.7Nb0.1O3–δ(LSCFN)钙钛矿为阳极,考察了直接使用CO–CO2燃料时的阳极结构演变、单电池电化学性能和稳定性。结果表明:在CO燃料中,ABO3钙钛矿结构LSCFN转变为A2BO4层状钙钛矿结构;在CO中引入少量CO2后,LSCFN则以单钙钛矿结构为主,并有效抑制了碳沉积。单电池在CO燃料下的最大功率密度可达0.6 W/cm2(850℃),并在n(CO):n(CO2)=5:1(摩尔比)燃料下运行超过100 h。  相似文献   

17.
近年来化石燃料大量消耗导致环境污染日益严重,固体氧化物电解池(SOEC)能够高效、环境友好地将CO2转化为CO等高附加值化学品,因此受到广泛关注。开发高效稳定的SOEC需要采用性能优异的电极材料,La0.7Sr0.3Cr0.5Fe0.5O3-δ(Sto-LSCrF)钙钛矿氧化物因其优异的氧化还原稳定性受到了高度重视。为进一步提高Sto-LSCrF燃料电极材料电解CO2的能力,在Sto-LSCrF的A位掺杂Ce来调控Ce0.08La0.62Sr0.3Cr0.5Fe0.5O3-δ(Ce-LSCrF)中可移动氧空穴含量以便提高其对CO2的吸附/活化能力,进而改善其电化学性能。同时对材料的相结构、氧空穴含量以及其对CO2的吸附/脱附能力进行详细的表征和分析。此外,我们还探究了Ce-LSCrF的电化学性能,发现与Sto-LSCrF相比,Ce-LSCrF燃料电极表现出较高的电解性能,也显示出较好的恒压稳定性,电解性能的增强归因于Ce-LSCrF晶格中较多的可移动氧空位可有效吸附/活化CO2,以上试验结果表明Ce-LSCrF是性能优异的CO2电解材料。  相似文献   

18.
汤春妮 《化学工程师》2023,(3):65-69+91
Co3O4/g-C3N4材料是一种可见光复合光催化材料,但很难同时满足理想光催化剂的诸多要求,限制了其实际应用能力。本文梳理了国内外利用金属粒子、金属氧化物、金属基材料、碳材料和磁性Fe3O4等对Co3O4/g-C3N4复合改性的研究进展,介绍了其制备方法、应用、光催化增强机理等。本文将对后期Co3O4/g-C3N4光催化剂的改性研究提供参考,以期获得性能更优的复合材料。  相似文献   

19.
以La-Mn钙钛矿氧化物为活性组分,生物炭为载体,利用浸渍法制备负载型脱硝催化剂LMO/BCNA。利用固定床反应装置考察了催化剂的催化活性以及耐硫耐水性能,100~250℃范围内,NO转化率>80%,N2选择性>90%,225℃时NO转化率最高,为95.8%,对应的N2选择性为95.4%。与氧化物相比,负载型催化剂的催化活性大幅提升,同时也扩宽了工作温度区间;生物炭载体的引入,减弱了催化剂对H2O、SO2的吸附,增强了耐硫耐水性能。应用稳态动力学方法构建催化反应动力学模型,在实验条件范围且O2含量为5%时,催化NH3-SCR反应过程中NO、O2、NH3的反应级数分别为0.66、0、0,并得到LMO/BCNA催化的反应活化能为25.52 k J/mol,低于商用钒钨钛催化剂的化学反应活化能(40~94 k J/mol)。  相似文献   

20.
超级电容器作为一种新型储能器件,凭借其高功率密度和超长的使用寿命等优点,已被实际应用于多个领域。在超级电容器组成部件中,电极材料对器件性能优劣起着关键作用,因此制备电化学性能优异的电极材料具有重要意义。采用乙酸镍、乙酸钴为原料,还原型谷胱甘肽(GSH)为形貌控制剂和硫源,通过水热法制备Ni Co2S4电极材料,并研究了水热反应时间对Ni Co2S4微观结构、形貌、电化学性能的影响。结果表明:在GSH作用下制备的Ni Co2S4材料呈现“蛋黄–蛋壳”结构;当电流密度为0.5 A/g时,比电容为1 552.7 F/g;在电流密度为10 A/g条件下可以保持61.3%的比电容;经过2 000次循环后,Ni Co2S4电极材料的比电容保持率可以维持在79.3%。分别以Ni Co2S4与活性炭为正负极组装一个混合型超级电容器,在功率密度为800 W/kg时可以提供33.9 W·h...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号