首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过SEM、TEM和XRD分析,结合拉伸试验、断裂韧度试验和硬度测试,研究了淬火温度对新型齿轮钢组织及力学性能的影响。结果表明,经850~1050℃淬火+深冷+回火,试验钢的抗拉强度、屈服强度和洛氏硬度均随着淬火温度的升高先升高后逐渐降低,在900℃时分别达到峰值,此时抗拉强度为1483 MPa,断裂韧度则在淬火温度为1000℃时达到最高,为62.4 MPa·m1/2。淬火温度低于1000℃时,试验钢的晶界及马氏体板条上存在富Mo型M6C碳化物,碳化物随淬火温度的升高逐渐溶解,在1000℃时未再观察到未溶相。试验钢的原始奥氏体晶粒尺寸随淬火温度的升高先缓慢增大,当温度超过1000℃时,原始奥氏体晶粒及组织快速粗化,断裂韧度和断面收缩率也出现大幅度降低。  相似文献   

2.
采用扫描电镜和透射电镜等手段研究了回火温度对N63钢组织及性能的影响。结果表明,N63钢具有良好的抗回火稳定性,260~600℃回火几乎未生成逆转变奥氏体,该温度区间内低温回火的析出相主要为ε-碳化物,当回火温度升高至480℃附近时基体析出M2C碳化物,抗拉强度和屈服强度分别达到峰值,为1483 MPa和1138 MPa,然后随回火温度的升高迅速下降,600℃回火时抗拉强度仅为1009 MPa,此时N63钢马氏体基体板条分解严重,析出相为渗碳体和M23C6;冲击吸收能量随回火温度先下降后升高再下降,420℃回火冲击吸收能量最低,为79 J。综合不同回火温度下的微观组织和力学性能,N63钢在480℃回火具有优异的强韧性匹配。  相似文献   

3.
以一种屈服强度为1100 MPa的高强度工程机械用钢为对象,研究了再加热淬火温度(880~980 ℃)和回火温度(200~650 ℃)对Q1100钢显微组织和力学性能的影响。结果表明,淬火温度从880 ℃升高至980 ℃,试验钢的平均奥氏体晶粒尺寸从8 μm增加到24 μm,试验钢的屈服强度和抗拉强度都呈先升高后降低的趋势,并在920 ℃时达到最大,而-40 ℃冲击性能则随之持续降低。试验钢经920 ℃淬火+200~650 ℃回火后,随着回火温度的提高,试验钢的马氏体板条合并,板条形貌逐渐模糊,碳化物数量和形貌也随之发生改变,强度大幅下降,塑性和韧性则先降低后升高。试验钢最佳的热处理工艺为920 ℃淬火+200~250 ℃回火。  相似文献   

4.
周钒  李宁  朱昌谦  周强  林昆 《热加工工艺》2008,37(10):62-64
研究了固溶温度对1Cr17NilSi2Mn1高强度高导磁双相不锈钢淬火回火后组织和性能的影响.结果表明,在淬火 620℃回火处理之前,先经950~1150℃固溶处理后,抗拉强度和屈服强度随同溶温度升高逐渐升高,1050℃时达到最大值(872 MPa、725 MPa),同溶温度进一步升高,抗拉强度、屈服强度呈下降趋势;硬度随固溶温度升高先下降后升高,950℃固溶时硬度最低(93 HRB),在1100℃达最大(99 HRB).微观组织分析发现,随固溶温度的升高,马氏体含量逐渐增多,在1100℃时马氏体含量最多,相界面最清晰,固溶温度过高时,马氏体含量逐渐下降.分析表明,1050℃固溶,马氏体含量多,且力学性能良好,是该合金的理想固溶温度.  相似文献   

5.
利用TEM,SEM及物理化学相分析法,研究了回火温度对高Ti微合金直接淬火高强钢显微组织和力学性能的影响.结果表明,随着回火温度的升高,抗拉曲线出现明显的转折点,抗拉强度先降低后升高,而屈服强度缓慢升高.回火温度为600℃时,实验钢具有最佳的综合力学性能;抗拉强度为1043 MPa,屈服强度为1020 MPa,延伸率为16%,-40℃冲击功为67.7 J.其主要原因是600℃时,纳米级的析出相数量最多,体积分数最大,分布最均匀.600℃回火时,实验钢的固溶强化和沉淀强化的强度增量分别约为149.82和171.72 MPa.  相似文献   

6.
30CrMnSiA钢样品经890℃油冷淬火处理后,分别在450-590℃进行回火处理。通过光学显微镜(OM)、扫描电镜(SEM)以及力学试验机等手段,研究了热处理后30CrMnSiA钢的显微组织以及力学性能。结果表明:随着回火温度的升高,30CrMnSiA钢组织中的回火索氏体占比不断提高,合金强度下降,伸长率增加。经890℃淬火+500℃回火处理后低合金钢的综合性能较佳,硬度、抗拉强度、屈服强度、伸长率和冲击韧度分别为39 HRC、1302 MPa、1147 MPa、11. 3%和28 J/cm~2。30CrMnSiA钢在530~550℃左右会发生回火脆性。回火温度继续升高,冲击韧度得以恢复。回火温度为590℃时,冲击韧度达到41. 25 J/cm~2,而抗拉强度和屈服强度分别为1126 MPa和1027 MPa。  相似文献   

7.
通过光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射等研究了不同温度淬火对AF9628超高强度钢力学性能和微观组织的影响。结果表明:随着淬火温度的升高,AF9628钢的晶粒逐渐长大,未溶相逐渐溶解,抗拉强度和屈服强度呈现逐渐下降趋势,冲击吸收能量、伸长率和断面收缩率先升高后降低。当淬火温度为970℃时,试验钢的晶粒较为均匀,未溶相大部分溶解,仅剩余微量的碳化物,此时钢的塑性较好,同时有足够的强度,其伸长率、断面收缩率、冲击吸收能量、抗拉强度和屈服强度分别为15%、59%、100 J、1746 MPa和1357 MPa。  相似文献   

8.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

9.
研究新型铜合金压铸模具钢的热处理工艺,讨论了淬火温度、回火温度和回火时间对模具钢组织和力学性能的影响。结果表明,随淬火温度升高,模具钢晶粒长大,高于1100℃时晶粒变得粗大。淬火温度1100℃时,模具钢硬度为63 HRC,室温抗拉强度为1897 MPa,600℃高温抗拉强度为1117 MPa。最佳热处理工艺为1100℃淬火+500℃回火5 h。  相似文献   

10.
借助光学显微镜、扫描电镜、拉伸试验机等研究了热处理工艺对自主设计的新型高强、高韧、无Ni低温油井管用钢(简称IMR-LS10钢)组织和性能的影响。结果表明:在800~880℃淬火时,随着淬火温度的升高,IMR-LS10钢的平均晶粒尺寸先增大后减小,经650℃回火后的抗拉强度逐渐增大,-45℃低温冲击吸收能量先增大再减小,840℃淬火时达到峰值38.6 J;在880~1000℃淬火时,随着淬火温度的增加,IMR-LS10钢的晶粒尺寸逐渐增大,经650℃回火后的抗拉强度先减小再增大,低温冲击吸收能量逐渐增大;经880℃淬火+200~750℃回火后IMR-LS10钢抗拉强度逐渐降低;回火温度低于500℃时,IMR-LS10钢的低温冲击吸收能量缓慢增加,当回火温度达到550℃时,低温冲击吸收能量达到峰值32.98 J,随后,低温冲击吸收能量出现降低趋势,并在650℃时出现最小值;IMR-LS10钢的最佳调质热处理工艺方案为880℃淬火+550℃回火。  相似文献   

11.
采用扫描电镜、透射电镜、X射线衍射仪、显微硬度计、拉伸试验机和冲击试验机等分析手段对C61齿轮钢试样经1000 ℃淬火+回火处理后组织和碳化物的析出行为及力学性能进行了研究。结果表明,试验钢在淬火和深冷状态下,一次碳化物基本溶解,基体为板条马氏体组织,此时固溶强化作用提供了较好的强韧化基础。当回火温度为420 ℃时,析出的M3C渗碳体为其提供了较高的强度,但这种析出相的存在对冲击性能具有较大的损伤;M3C渗碳体会在482 ℃回火时溶解,10~20 nm尺寸的棒状M2C碳化物在板条马氏体内的弥散析出,提供了较高强度的同时改善了冲击性能。随着回火温度的继续升高,大量逆转变奥氏体生成,不仅有效提高冲击性能,同时强度下降也更为明显;且M2C碳化物粗化长大,第二相的强化作用降低。综合得出,试验钢在482 ℃的回火条件下能达到较好的强韧化匹配,抗拉强度和屈服强度分别为1781 MPa和1546 MPa,冲击吸收能量为97 J,硬度峰值为52 HRC。  相似文献   

12.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

13.
周军  曾德愚 《铸造技术》2015,(1):122-124
在传统的控制轧制基础上,直接淬火+回火工艺得到了Nb-Ti低合金钢的最优综合力学性能,即回火温度为200℃时,抗拉强度为1 730 MPa,屈服强度为1 400 MPa,-40℃冲击功为43 J。低温回火,板条内析出碳化物。随回火温度升高,实验钢韧性先降低,形成回火脆性线性,再升高,逐渐形成球形渗碳体,600℃时最多。  相似文献   

14.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

15.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

16.
吴秋平  王春旭  刘宪民  厉勇 《热加工工艺》2012,41(6):179-180,183
通过拉伸、冲击和硬度等力学试验方法以及透射电镜(TEM)对9310渗碳钢的力学性能和组织进行了研究,并采用热力学平衡计算(Thermo-Calc软件)方法,得到了该钢的平衡相图。结果表明:9310钢淬火后具有最高的抗拉强度,随回火温度的升高,在100~350℃,9310钢的抗拉强度缓慢降低,当温度高于350℃时,其抗拉强度快速下降;9310钢的屈服强度随回火温度的升高而逐渐升高,在250~350℃时达到峰值,随后逐渐降低;冲击韧度随回火温度的升高而逐渐升高,在250℃时达到峰值,而随后在350~450℃为最小值,而温度高于450℃后又会升高。9310钢在150~250℃回火后细小的ε碳化物在板条马氏体基体中弥散析出分布,此时9310钢具有最佳的强韧性配合。  相似文献   

17.
设计了一种低碳CuNiCrMnMo钢,并研究了3种热处理工艺(油淬+回火、水淬+回火和轧后直接淬火回火)条件下试验钢的组织与性能.试验钢经油淬和600 ℃回火1 h,屈服强度Rp0.2=645 MPa,抗拉强度Rm=745 MPa,-60 ℃冲击吸收能量为138 J;经水淬和650 ℃回火1 h,屈服强度Rp0.2= 668 MPa,抗拉强度Rm=721 MPa,-80 ℃下冲击吸收能量为216 J.经直接淬火和650 ℃回火1 h,达到最佳的强韧性匹配,即屈服强度Rp0.2=700 MPa,抗拉强度Rm=764 MPa,-80 ℃下冲击吸收能量为182 J.  相似文献   

18.
为了探索V-N微合金化在低碳贝氏体钢中的应用,利用扫描电镜(SEM)、透射电镜(TEM)、能谱仪(EDS)等实验方法,研究了不同回火温度对轧后保温与直接淬火两种工艺生产的钒氮超低碳贝氏体钢组织性能的影响.结果表明:随着回火温度的升高,屈服强度先升高后降低,直接淬火后600℃回火,材料的屈服强度为805 MPa,较轧态提高200 MPa,而直接淬火回火比轧后保温回火强度高65 MPa;回火后伸长率始终高于轧态.600℃回火时贝氏体基体上存在大量纳米级V(C,N)析出颗粒,对屈服强度的提高起了决定性作用;直接淬火钢回火后组织稳定性更高,析出物更加细小弥散.  相似文献   

19.
研究了淬火温度对25CrMoNiVNbTi钢的高温拉伸性能和组织的影响。结果表明:在900~1100 ℃温度范围内,随着淬火温度的升高,25CrMoNiVNbTi钢在600 ℃的高温拉伸性能先增加后降低,本试验条件下的最佳热处理工艺为1000 ℃淬火30 min+620 ℃回火2 h,经该工艺处理后该钢在600 ℃下拉伸时其屈服强度和抗拉强度分别达到974 MPa及1046 MPa,洛氏硬度为40.5 HRC,显微组织为回火索氏体、贝氏体、碳化物和少量的残留奥氏体,而且钢的晶粒细小,位错密度高,大大提高了该钢在高温下的力学性能。扫描观察结果表明该钢在高温下拉伸后的断口为韧性断裂。  相似文献   

20.
研究了淬火温度对25CrMoNiVNbTi钢的高温拉伸性能和组织的影响。结果表明:在900~1100℃温度范围内,随着淬火温度的升高,25CrMoNiVNbTi钢在600℃的高温拉伸性能先增加后降低,本试验条件下的最佳热处理工艺为1000℃淬火30 min+620℃回火2 h,经该工艺处理后该钢在600℃下拉伸时其屈服强度和抗拉强度分别达到974 MPa及1046 MPa,洛氏硬度为40.5 HRC,显微组织为回火索氏体、贝氏体、碳化物和少量的残留奥氏体,而且钢的晶粒细小,位错密度高,大大提高了该钢在高温下的力学性能。扫描电镜观察结果表明该钢在高温下拉伸后的断口为韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号