首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
活性炭对含铜制药废水的吸附特性   总被引:4,自引:2,他引:2  
以粉末活性炭为吸附剂,采用批式试验,研究静态吸附对黄连素脱铜废水中Cu2+的去除效果,分析了吸附剂投加量(5~50 g/L),pH(1.0~5.0)和接触时间(20~600 min)对吸附效果的影响. 当pH为2.4,吸附剂投加量为30 g/L时,反应300 min即可达到吸附平衡状态. 通过对吸附动力学和吸附等温线的模型分析发现,二级吸附动力学模型能够更好地描述试验结果,对吸附平衡数据的拟合采用Langmuir吸附等温线优于采用Freundlich吸附等温线.   相似文献   

2.
以膨润土-壳聚糖复合材料为吸附剂,对模拟罗丹明B废水进行吸附行为研究,考察了壳聚糖负载量、pH值、吸附时间、罗丹明B初始浓度等因素对吸附效果的影响,并分析吸附等温线及吸附机理。结果表明,最佳壳聚糖负载量为0.005g/g,最佳pH值为6;随着吸附温度的升高,吸附量增加;在吸附过程中化学吸附占优势;对实验数据运用相关吸附等温线模型拟合,得出等温吸附平衡更符合Langmuir模型。  相似文献   

3.
The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.  相似文献   

4.
Removal of heavy metal ions from industrial effluents by the activated carbon prepared by steam activation of waste coconut buttons through batch adsorption process.  相似文献   

5.
A chemically prepared carbon was synthesized from date palm leaflets via sulphuric acid carbonization at 160℃. Adsorption of ciprofloxacin (CIP) from aqueous solution was investigated in terms of time, pH, concentration, temperature and adsorbent status (wet and dry). The equilibrium time was found to be 48 hr. The adsorption rate was enhanced by raising the temperature for both adsorbents, with adsorption data fitting a pseudo second-order model well. The activation energy, Ea, was found to be 17 kJ/mol, indicating a diffusion-controlled, physical adsorption process. The maximum adsorption was found at initial pH 6. The wet adsorbent showed faster removal with higher uptake than the dry adsorbent, with increased performance as temperature increased (25-45℃). The equilibrium data were found to fit the Langmuir model better than the Freundlich model. The thermodynamic parameters showed that the adsorption process is spontaneous and endothermic. The adsorption mechanism is mainly related to cation exchange and hydrogen bonding.  相似文献   

6.
采用静电自组装的方法制备出具有草莓结构的TiO2@酵母微球作为吸附材料,对阴离子型荧光增白剂-VBL(FWA-VBL)废水进行吸附研究,考察了溶液pH、溶液初始浓度和TiO2@酵母投加量对吸附效果的影响.结果表明,酸性条件有利于TiO2@酵母微球对FWA-VBL的吸附,平衡吸附量随着溶液初始浓度的增加而增加,随着TiO2@酵母微球投加量的增加而减小.TiO2@酵母对FWA-VBL的吸附行为更加符合Langmuir等温模型,在温度为323.15K下最大吸附量为167.50mg/g; 吸附动力学符合二级动力学方程; 热力学参数表明吸附过程是自发的吸热过程.归因于光催化-吸附耦合效应,TiO2@酵母微球展现出了良好的原位再生能力.H2O2的添加有助于提高TiO2@酵母微球的再生性能.  相似文献   

7.
Na-rich birnessite (NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion (NH4+) from aqueous solution. In order to demonstrate the adsorption performance of the synthesized material, the effects of contact time, pH, initial ammonium ion concentration, and temperature were investigated. Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model. The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated. The monolayer adsorption capacity of the adsorbent, as obtained from the Langmuir isotherm, was 22.61 mg NH4+-N/g at 283 K. Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process. Our data revealed that the higher NH4+ adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction. Particularly, the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion. The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.  相似文献   

8.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

9.
Rubber leaf powder (an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(II) ions from aqueous solution was evaluated. The interactions between Pb(II) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDX). The effects of several important parameters which can affect adsorption capacity such as pH, adsorbent dosage, initial lead concentration and contact time were studied. The optimum pH range for lead adsorption was 4–5. Even at very low adsorbent dosage of 0.02 g, almost 100% of Pb(II) ions (23 mg/L) could be removed. The adsorption capacity was also dependent on lead concentration and contact time, and relatively a short period of time (60–90 min) was required to reach equilibrium. The equilibrium data were analyzed with Langmuir, Freundlich and Dubinin-Radushkevich isotherms. Based on Langmuir model, the maximum adsorption capacity of lead was 95.3 mg/g. Three kinetic models including pseudo first-order, pseudo second-order and Boyd were used to analyze the lead adsorption process, and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

10.
11.
This work was conducted to determine the practicability of using a new adsorbent 4-ethyl thiosemicarbazide intercalated,organophilic calcined hydrotalcite(ETSC-OHTC) for the removal of uranium(U(VI)),and thorium(Th(IV)) from water and wastewater.The FTIR analysis helped in realizing the involvement of nitrogen and sulphur atoms of ETSC in binding the metal ions through complex formation.Parameters like adsorbent dosage,solution pH,initial metal ions concentration,contact time and ionic strength,that influence adsorption phenomenon,were studied.The optimum pH for maximum adsorption of U(VI) and Th(IV) was found to be in the range 4.0-6.0.The contact time required for reaching equilibrium was 4 hr.The pseudo second-order kinetic model was the best fit to represent the kinetic data.Analysis of the equilibrium adsorption data using Langmuir,Freundlich and Sips models showed that the Freundlich model was well suited to describe the metal ions adsorption.The K F values were 25.43 and 29.11mg/g for U(VI) and Th(IV),respectively,at 30°C.The adsorbent can be regenerated effectively from U(VI) and Th(IV) loaded ones using 0.01mol/L HCl.The new adsorbent was quite stable for many cycles,without much reduction in its adsorption capacity towards the metals.  相似文献   

12.
白果壳遗态Fe/C复合材料对水中磷的吸附特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究PBGC-Fe/C-G(白果壳遗态Fe/C复合材料)对水中磷的吸附特征,以PBGC-Fe/C-G为吸附剂,对吸附剂投加量、溶液体系pH、初始磷质量浓度、温度和吸附剂粒径为影响因素进行静态吸附试验分析,并结合SEM、EDS、XRD和FT-IR等手段对吸附前、后材料进行表征,以揭示PBGC-Fe/C-G的吸附除磷机制.结果表明:①当初始磷质量浓度 < 10 mg/L、吸附剂投加量为0.2 g/(50 mL)、溶液为酸性(pH=3)、反应温度为45℃、吸附剂粒径 < 0.149 mm时,吸附效果最佳,吸附量达1.62 mg/g.②准二级动力学模型和Freundlich吸附等温模型能较好地模拟PBGC-Fe/C-G对磷的吸附过程.③热力学结果显示,ΔG < 0、ΔS>0和ΔH>0,说明PBGC-Fe/C-G对磷的吸附过程是自发、熵增的吸热过程.研究显示,PBGC-Fe/C-G吸附除磷主要通过配位作用、静电引力、等电荷离子交换和物理作用4种协同完成,其中Fe活性位与磷酸根离子的配位反应为主要的反应过程.   相似文献   

13.
以红土镍矿为研究对象,考察了原矿(HT)及改性矿(HT-FeNi)去除水体中罗丹明B (RhB)的效果.借助XRD、BET、IR等表征手段,结合吸附动力学和等温吸附模拟研究了HT吸附RhB的过程及机制.结果表明:HT的孔隙结构较为丰富,有良好的RhB吸附性能.当HT添加量为0.2g/L时,RhB去除率为39.03%,吸附量达到93.80mg/g.HT添加量增加,RhB去除效果增强,平衡吸附量减小.HT吸附RhB的过程更符合准二级动力学,包含表面扩散及颗粒内扩散两个步骤.等温吸附模型拟合发现Freundlich能够准确描述HT吸附RhB的过程.1/n<0.5,表明吸附过程较易进行.HT经5次循环实验后,吸附量仍能达到39.67mg/g,表明HT有较好的循环使用性能.HT吸附RhB主要归因于Si-O吸附位点.通过气基还原制备得到改性矿(HT-FeNi).采用SEM、XRD、BET、XPS等手段对HT-FeNi进行表征分析,并考察了HT-FeNi降解RhB的效果.结果表明:HT-FeNi比表面积小(14.374m2/g),主要成分为铁镍双金属.HT-FeNi不能通过吸附作用去除RhB,而HT-FeNi/Air/pH=3体系在40min内RhB降解效率为94%.捕获活性氧物种的实验证明,HT-FeNi/Air/pH=3体系去除RhB过程中起主要作用的活性氧物种是羟基自由基(·OH).在酸性条件下,HT-FeNi通过活化O2生成·OH,Ni0诱导的Fe2+/Fe3+循环促使HT-FeNi/Air/pH=3体系生成更多的·OH.将HT-FeNi/Air/pH=3体系应用于去除水体中甲基橙(MO)和二硝基氯苯(DNCB),去除效率分别为47%、78%.  相似文献   

14.
给水厂污泥具有较强的吸附能力,可作为从水溶液中去除重金属的潜在吸附剂。通过试验分析了给水厂污泥(WTR)作为吸附剂去除溶液中Hg(Ⅱ)时,pH值、Hg(Ⅱ)初始浓度、污泥粒径以及温度对Hg(Ⅱ)吸附性能的影响,确定了吸附过程的动力学及吸附等温模型,并探究了其吸附机理。结果表明:溶液pH值对给水厂污泥吸附Hg(Ⅱ)具有较大影响,当pH=8.0时吸附效果最佳。采用粒径较小的污泥有利于对Hg(Ⅱ)的吸附,污泥对Hg(Ⅱ)的吸附量随着初始浓度的增加而增加。给水厂污泥对Hg(Ⅱ)的吸附符合准二级动力学模型,平衡等温线符合Langmuir吸附等温模型,25℃条件下pH为7.0时污泥的饱和吸附量达到69.13 mg/g。升温有利于给水厂污泥对Hg(Ⅱ)的吸附。通过分析吸附前后污泥比表面积和微孔体积的变化发现,颗粒内扩散是给水厂污泥吸附Hg(Ⅱ)的限速步骤。  相似文献   

15.
Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of Ag(I) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 min and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(II), Zn(II), Ni(II), Pb(II) and Cr(III) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.  相似文献   

16.
以表面活性剂十二烷基硫酸钠(SDS)为软模板剂,制得有机三维花状层状双金属氢氧化物(3D-SLDH).采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)和N2吸附-脱附等表征手段对3D-SLDH的结构进行表征,确定最佳合成尿素浓度,并通过静态吸附实验考察了3D-SLDH对金橙Ⅱ(AO7)、罗丹明...  相似文献   

17.
石墨烯基磁性复合材料吸附水中亚甲基蓝的研究   总被引:3,自引:2,他引:1  
常青  江国栋  胡梦璇  黄佳  唐和清 《环境科学》2014,35(5):1804-1809
建立了一种超声辅助共沉淀法制备磁性Fe3O4/氧化石墨烯(Fe3O4/GO)纳米粒子.透射电镜和磁滞回线研究表明,该复合物具有小的颗粒尺寸和超顺磁性.该磁性纳米材料可以吸附废水中的染料亚甲基蓝,实验研究了溶液pH值、吸附剂的用量、时间和温度对亚甲基蓝去除率的影响.结果表明,pH值在6~9范围内,Fe3O4/GO都能高效地吸附亚甲基蓝.反应过程在前25 min反应速率很快,到180 min内达到吸附平衡.该磁性纳米材料对亚甲基蓝的吸附符合Langmuir吸附等温模型和准二级动力学方程,吸附过程是一个自发和吸热过程.该吸附材料对亚甲基蓝吸附容量高,在313 K时Fe3O4/GO的饱和吸附量为196.5 mg·g-1.另外,可以方便地通过外部磁场分离回收吸附剂,利用过氧化氢可以再生重复使用,是一种优良的吸附染料废水的材料.  相似文献   

18.
选择苯甲腈为目标污染物,研究添加不同热解温度制备小麦秸秆生物碳对黄土吸附苯甲腈的影响. 研究表明:不加生物炭黄土对苯甲腈的吸附约8h达到平衡,而加入生物炭后,黄土对苯甲腈的吸附时间缩短,并随着加入生物炭热解温度的升高,吸附平衡时间缩短越明显,同时,黄土对苯甲腈的饱和吸附量也显著增加;添加生物炭黄土对苯甲腈的动力学吸附数据显示较好的符合了准二级动力学方程;无论是否添加生物炭,苯甲腈在黄土上的吸附都符合Freundlich吸附的等温模型,随系统温度升高,添加生物炭黄土对苯甲腈的饱和吸附量也显著增加,表明该吸附过程为吸热反应;苯甲腈在黄土上的吸附等温线符合C-型吸附等温模式. 计算结果显示,平均吸附自由能E介于1.865~3.171kJ/mol,表明苯甲腈在黄土上的吸附,无论是否添加生物炭,都以物理吸附为主;热力学参数计算结果显示,无论是否添加生物炭,黄土对苯甲腈的吸附过程中吉布斯自由能ΔGθ均小于0、熵变ΔSθ和焓变ΔHθ均大于0,表明土壤对苯甲腈的吸附为自发进行的吸热过程. 研究结果说明,添加生物炭黄土对苯甲腈的吸附过程包含表面吸附和颗粒内部扩散、外部液膜扩散等机制.  相似文献   

19.
A novel illite@carbon (I@C) nanocomposite adsorbent has been synthesized via a facile hydrothermal carbonization process (HTC) using glucose as carbonaceous source and illite as the carrier. The morphology, microstructure and surface properties of the prepared nanocomposite adsorbent were analyzed by FESEM, TGA, XRD, FT-IR and Zeta potential measurements. Batch experiments were carried out on the adsorption of Cr(VI) to determine the adsorption properties of the composite. The adsorption of Cr(VI) onto the I@C nanocomposite was well described by the pseudo-second-order kinetic model and Langmuir isotherm. Compared with the illite and carbon material (SC) separately, the prepared I@C nanocomposite adsorbent exhibited enhanced adsorption performance for Cr(VI) with a maximum adsorption capacity of 149.25 mg/g, which was higher than that of most reported adsorbents. In addition, the adsorption process was spontaneous and endothermic based on the adsorption thermodynamics study. The adsorption of Cr(VI) by I@C was highly pH-dependent and the optimum adsorption occurred at pH 2.0. The Zeta potential analysis results indicated that the electrostatic interactions between anionic Cr(VI) and the positively charged surface of the adsorbent might be critical to the adsorption mechanism. This study demonstrated that the I@C nanocomposite should be a promising candidate for a low-cost, environmental friendly and highly efficient adsorbent for the removal of toxic Cr(VI) from wastewater.  相似文献   

20.
采用盐酸浸泡活化和硫酸铝溶液浸泡改性的方法对人造沸石进行改性,用模拟高氟水样进行静态及动态除氟实验。动力学研究结果表明:吸附剂吸附速度快,30 min接近吸附平衡,吸附速率可用拟二级动力学方程描述。吸附等温线符合Langmuir方程,饱和吸附量为5.07 mg/g,吸附平衡常数为0.060 2 L/mg。静态实验对浓度...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号