首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于IMU旋转的捷联惯导系统自补偿方法   总被引:11,自引:7,他引:4  
为了有效地抑制惯性器件常值偏差对惯导系统导航精度的影响,提出了基于惯性测量单元(inertial measurement unit,IMU)旋转的自动补偿方法.由于旋转的引入,IMU中陀螺仪和加速度计的常值偏差被调制成正弦信号,通过积分运算可以有效地消除常值偏差对惯导系统导航精度的影响.在分析单、双轴旋转补偿原理的基础上,提出一种改进的单轴旋转调制方法并对该方法进行了理论证明和实验分析.与以往的单轴旋转方式及未采用旋转方式时的导航误差进行了比较,结果表明该方案可以消除所有方向上惯性器件常值偏差的影响,有效地提高系统的定位精度.  相似文献   

2.
三轴旋转捷联惯导系统旋转方案设计   总被引:2,自引:0,他引:2  
为了弥补在调制型捷联惯导系统中,相对地理系的旋转方案无法抵消陀螺仪各误差项与地球自转角速度耦合项的缺点,提出了相对地心惯性系的三轴旋转方案.在分析了调制型捷联惯导系统中惯性器件常值偏差的误差传播规律后,结合其误差传播特性提出相对地心惯性系三轴旋转方案的旋转路径设计原则,并依据该原则设计了三轴四位置旋转方案.利用仿真实验和实物试验验证了该旋转方案的正确性,并将试验结果与相对地理系的旋转方案进行对比,对比结果表明该方案能够消除惯性器件所有常值偏差对导航信息的影响.  相似文献   

3.
单轴旋转式捷联惯导方位对准研究   总被引:1,自引:1,他引:1  
为消除东向陀螺常值漂移对捷联惯导方位对准精度的影响,在罗经法对准频率特性分析的基础上提出了一种适于旋转调制捷联惯导系统的罗经对准方法.该方法利用旋转过程中陀螺漂移和加速度计零偏被调制为周期变量的特点,针对旋转频率来改变罗经法对准系统的参数,使系统能够对调制后的陀螺漂移和加速度计零偏产生抑制作用,以此消除静基座对准中由东向陀螺常值漂移所引起的方位误差角.仿真实验结果表明,相比静基座对准,在单轴旋转中采用此种罗经法对准可以消除方位角的常值误差,方位对准的精度可提高至10倍以上.  相似文献   

4.
单轴旋转惯导系统建模与仿真   总被引:1,自引:0,他引:1  
建立了单轴旋转式捷联惯导系统数学模型和仿真模型,采用的导航算法能有效避免转台测角误差对系统定位精度造成的影响;仿真结果表明旋转IMU能提高抑制惯导定位误差的累积,提高惯导定位精度、姿态精度和速度精度也同时得到提高。  相似文献   

5.
捷联式惯导系统(捷联式惯性导航系统)的初始对准就是确定捷联矩阵的初始值,陀螺与加速度计的误差会导致对准的误差,对准时飞行器的干扰运动也是产生对准误差的重要因素,因此滤波技术对捷联式惯导系统尤为重要.通过研究捷联惯导初始对准的误差模型,提出了将加权递推最小二乘滤波算法应用于捷联式惯导系统的初始对准中,仿真结果表明,该方法估计精度高,收敛速度快.  相似文献   

6.
适用于低精度惯导的非线性对准方法研究   总被引:2,自引:4,他引:2  
给出了一种适用于低精度惯导的非线性对准模型.用乘性四元数形式定义捷联惯导的姿态误差,推导了捷联惯导的非线性速度误差方程和姿态误差方程.基于速度量测信息,给出了大失准角条件下的非线性对准模型,通过UKF算法估计失准角完成精对准.仿真结果表明,在陀螺精度为0.1°/h的情况下,在360s对准时间内达到水平0.03°,方位1.5°的精度(1σ).即使当方位误差达到90°,非线性模型仍能正常收敛.最后通过转台摇摆试验进一步验证了非线性模型的有效性.  相似文献   

7.
摇摆基座下旋转捷联系统粗对准技术研究   总被引:4,自引:6,他引:4  
阐述了利用惯性测量单元(inertial measurement unit, IMU)的转动调制惯性器件常值偏差的原理.针对载体处于摇摆基座下难以实现粗对准这一问题,在已有惯性系对准方法的基础上提出了改进的惯性系对准方案并应用于旋转捷联惯导系统中.利用数字低通滤波器滤除由于摇摆和振荡运动产生的加速度干扰,实现了旋转捷联系统的粗对准.对比地分析了2种惯性系下的粗对准原理并进行了仿真,利用系泊实验进一步验证了改进的惯性系对准方案的可行性.结果表明,载体处于摇摆状态时,采用低通滤波方法可以有效地提取基座惯性系下的重力加速度信息,并建立更为准确的捷联矩阵;与传统的惯性系对准方法相比较可以看出,采用滤波技术的惯性系对准结果具有更好的稳定性,存在广阔的应用前景.  相似文献   

8.
针对舰载惯导系统在摇摆基座条件下高精度初始对准问题,提出一种简单且易于实现的快速初始对准方法。利用开路法构建数学稳定平台隔离载体摇摆运动,提高了高精度舰载惯导系统摇摆基座对准过程中量测数据的信噪比,缩短了对准时间并提高了误差参数的估计精度;建立了开路法数学平台偏角的误差模型,利用参数辨识法提取相关对准参数,从而估计出陀螺漂移和数学平台偏角并进行补偿。海上试验结果表明,该对准方法可在8 h内达到优于0.000 5°/h的对准精度,有效地解决了摇摆基座条件下舰载惯导系统的高精度初始对准问题。  相似文献   

9.
适用于强阵风干扰下的捷联惯导自对准算法   总被引:1,自引:0,他引:1  
对于处于起竖状态的车载武器来说,在强阵风的干扰下会产生较大摇晃,由于其捷联惯导系统(SINS)的重心较高,SINS的测量值很容易受到晃动所带来的角运动和线运动干扰,SINS难以快速地实现自对准,针对该问题,提出了强阵风干扰下SINS自对准算法。该算法利用惯性坐标系下的姿态更新来实时地反映载体在晃动干扰下的姿态变化,以消除角运动干扰的影响;利用武器存在零速摇晃中心的特点,通过获取加速度计在零速摇晃中心的等效输出来消除线运动干扰的影响,然后结合姿态的最优估计实现初始对准。仿真结果表明,该算法不需要进行粗对准,能够在强阵风干扰下快速地实现自对准。  相似文献   

10.
捷联惯导系统误差模型与仿真分析   总被引:1,自引:0,他引:1  
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响。应用捷联惯性导航原理,针对系统短时间导航的特点,简化载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型。在此基础上,建立了误差状态空间方程与误差模型框图。在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150秒导航试验数据,结果表明:导航系X轴的相对系统误差小于20%,Y轴、Z轴的相对系统误差小于5%,验证了误差数学模型的正确性。此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生基本的影响。  相似文献   

11.
As the inertial navigation completely depends on the sensed acceleration and rotation rate by IMU, the sensor errors accumulate and eventually lead to diverged inertial solutions. Therefore the compensation of the inertial sensor errors is an effective approach to improve the SINS navigation performance. The rotation error modulation in rotary SINS, which has been extensively used for the filter-optical IMU in the past, is one of the techniques to compensate or mitigate the inertial sensor errors and eventually improve the system navigation performance. The rotary SINS is an inertial navigator in which the IMU is installed on the rotational platform and rotated following the pre-designed rotation configuration, and the rotation error modulation is the technique that compensates the navigation errors caused by inertial sensor bias in a complete rotation cycle by rotating IMU. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper to develop a MEMS-based rotary SINS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer the comparable navigation performance to tactical-grade IMU. Simulation results indicate that, compared with the conventional method, the proposed approach attenuates the navigation errors and improve the calibration accuracy based on the reciprocating rotation scheme can be used to automatically improve the observability.  相似文献   

12.
提出利用虚拟仪器技术开发测试平台的设计方法,详细介绍了某型组合导航系统测试平台的软硬件设计,重点分析了设计中难点问题及其解决方法.通过实际测试和用户使用,证实该测试平台具有系统性能稳定、可靠,操作方便,界面友好等特点.  相似文献   

13.
捷联惯性/GNSS组合导航系统是飞机定位和导航的重要机载电子设备;但是开发具有模块化、柔性、通用性和远程控制和测试功能的通用自动测试平台,却是一个难题.文中在简要介绍虚拟仪器技术的基础上,提出用虚拟仪器技术开发通用自动测试系统的设计方法;详细介绍了捷联惯性/GNSS组合导航系统测试系统的软硬件设计,重点分析了设计中难点问题及其解决方法.通过实际测试和评估,该综合测试系统性能稳定、可靠,操作方便,界面友好.  相似文献   

14.
针对惯性测量单元(inertial measurement unit,IMU)旋转角速度变化过程对旋转调制型捷联系统(strapdown inertial nav-igation system,SINS)定位精度的影响进行分析和研究。例举IMU旋转方式并分析旋转自补偿技术调制惯性器件偏差的基本原理;详细推导了IMU运动状态变化过程对调制型捷联系统导航精度的影响并分析了IMU正反转方案的误差特性,最后根据仿真分析确定旋转角速度的选取依据。在理论分析的基础上进行了仿真实验。结果表明,IMU的旋转运动可以有效地调制惯性器件部分偏差,但是旋转角速度的大小及角速度变化过程依然会对调制型捷联系统的定位精度产生影响。  相似文献   

15.
混合式惯导系统是一种集平台式、捷联式、旋转式惯导系统优点于一体的新型惯导系统。该型惯导可利用自身的旋转机构和高精度、高分辨率角度传感器实现不拆机条件下的误差参数自标定功能,极大简化了标校流程和系统维护工作量,有利于武器平台和作战系统效能的发挥。针对混合式惯导系统的结构特点和典型的旋转方式进行了误差分析,给出了误差参数自标定的设计原则和方法,并用混合式惯导原理样机进行了验证,结果表明,所设计的自标定方案能够在不拆机条件下利用自身旋转机构完成对陀螺漂移、加计零偏、刻度系数误差及安装偏角等参数进行精确估计,因此具有较高的理论意义和工程应用价值。  相似文献   

16.
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响.应用捷联惯性导航原理,针对系统短时间导航的特点,简化了载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型.在此基础上,建立了误差状态空间方程与误差模型框图.在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150 s导航试验数据.结果表明:导航系X轴的相对系统误差<20%,Y轴、Z轴的相对系统误差<4%,验证了误差数学模型的正确性.此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生的基本影响.  相似文献   

17.
基于重力信息的惯性系粗对准精度分析   总被引:2,自引:0,他引:2  
基于重力信息的惯性系粗对准方法是近期国内提出的一种解决动基座对准的新方法,诸多文献表明了该方法工程应用的可行性,但至今未见对其理论精度的分析.详细分析了初始对准的主要误差源陀螺常值漂移和加速度计零偏对惯性系粗对准精度的影响.用微分扰动法对姿态矩阵取微分,得到惯性系对准的误差方程.从惯性系下的速度误差分析人手,分别讨论了陀螺常值漂移和加速度计零偏对粗对准精度的影响,推导出惯性器件误差与失准角之间的解析表达式.指出该方法的对准精度取决于转换矩阵的精度,并分析得出该方法与传统解析粗对准具有相同的稳态对准极限值.  相似文献   

18.
长航时惯导系统全阻尼综合校正算法   总被引:6,自引:1,他引:6  
针对惯导系统长时间工作时导航误差随时间发散的问题,提出一种适用于长航时惯导系统的全阻尼综合校正算法。设计了全阻尼网络,利用外部速度量测对惯导系统进行水平和方位阻尼,衰减了导航误差中舒拉周期及地球自转周期振荡;根据全阻尼条件下的惯导系统误差传播规律设计了综合校正算法,利用不定期获取的外部参考位置计算导致导航误差发散的陀螺漂移并进行修正,更好地保证了惯导系统的工作自主性。试验结果表明,该算法明显地抑制了惯导误差随时间的发散,可有效提高长航时惯导系统的导航精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号