首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过Brookfield粘度测定及室内岩心驱油试验评定。研究了聚(丙烯酰胺-丙烯酸)/聚(丙烯酰胺-二甲基二烯丙基氯化法(P(AM-AA)/P(AM-DMDAAC)分子复合型聚合物驱油剂的增粘,抗温,抗盐性及其驱油效果,结果表明,聚合物组成一定时,其复合比影响溶液复合增粘效果,复合型聚合物溶液的抗盐性明显优于P(AM-AA)溶液的抗盐性,多价金属离子的加入是提高溶液抗盐性的有效途径,该驱油剂的最终  相似文献   

2.
接枝丙烯酰胺共聚物的溶液性能和微结构   总被引:2,自引:0,他引:2  
采用水溶液自由基聚合法合成了新型的丙烯酰胺(AM)/4-乙烯苄基辛烷基酚聚氧乙烯(18)醚(VE)/2-丙烯酰胺基-2-甲基丙磺酸钠(NaAMPS)接枝共聚物(PAE),以解决驱油聚合物抗高盐性能差的难题.通过傅里叶变换红外(FT-IR)光谱和核磁共振氢谱(1HNMR)对PAE的分子结构进行了表征.PAE盐溶液显示了两次盐增稠和热增稠效应.对于VE摩尔分数为0.93%的PAE,当其质量浓度为2.0g·L-1时,于30℃在5.0和90.0g·L-1NaCl溶液中的表观粘度分别为1167.0和338.0mPa·s,显示了优异的增粘和抗盐能力;并且于85℃在5.0g·L-1NaCl溶液中的表观粘度仍达685.0mPa·s,显示了良好的耐温性能.PAE还具有较好的表、界面活性.扫描电镜(SEM)照片显示,PAE在纯水中形成了独特的缔合结构,而且在盐水溶液中也形成了连续的微结构,这表明在水中伸展的分子链在盐水中的构象仍然较伸展.  相似文献   

3.
系列的高分子量水溶性丙烯酰胺 /丙烯酸 /2 丙烯酰胺 2 甲基丙磺酸 (AM/AA/AMPS)三元共聚物(P3A)由相应的 (AM/AMPS)二元共聚物通过部分水解方法制得 .聚合物的结构和组成使用电位滴定和13 C NMR谱测定 ,得到的结果指出 ,在设定的试验条件下 ,水解过程中 ,高分子链上AMPS单元具有充分的稳定性 ,而丙烯酰胺基平稳地转变为丙烯酸 .在所有不同聚合物 (P2A)情况下 ,由于阴离子基团和OH-离子的静电相斥作用 ,酰胺基的水解反应均遵循自动减缓动力学的模式 ,同时 ,最后反应转化率趋向极限 ,AM剩余值位于 3 0mol%左右 ,另外对各种三元共聚物 (P3A)的溶液特性粘数和组成的关系亦作了详细的研究 .  相似文献   

4.
化学驱油过程中部分水解聚丙烯酰胺的二级结构研究   总被引:1,自引:0,他引:1  
高分子量聚丙烯酰胺水溶液因其显著的增粘作用与粘弹性而在三次采油中得到广泛应用 .多年来大庆油田采用注入部分水解聚丙烯酰胺 (HPAM)水溶液驱油 ,实践证明 ,此法可大幅度提高原油采出率[1,2 ] .关于聚丙烯酰胺及其部分水解产物 (结构上等价于丙烯酰胺与丙烯酸的无规共聚物 )的链结构评价及其同高价离子的络合作用已有一些报道 [3~ 6] .在聚合物驱油过程中 ,HPAM水溶液在地下岩层中流动时间较长 ,实验室难以模拟 ,有关 HPAM流经地下岩层后的结构研究尚未见报道 .评价化学驱油油田矿场采出液中 HPAM的链结构 ,并探讨其结构变化机理…  相似文献   

5.
以丙烯酰胺(AM),丙烯酸(AA),N,N-二烯丙基-3-吡啶甲酰胺(DANA)和N-烯丙基辛酰胺(AOCA)为单体,采用过硫酸铵-亚硫酸氢钠((NH_4)_2S_2O_8-NaHSO_3)氧化还原引发体系合成了一种新型水溶性四元共聚物AM/AA/AOCA/DANA。确定了最佳反应条件:m(AM)/m(AA)=6:4、DANA=0.16 wt%,AOCA=0.15wt%、pH值7、引发剂0.3 wt%、单体浓度20 wt%、聚合温度50℃。通过红外、核磁氢谱、环境扫描电镜以及特性粘数对AM/AA/AOCA/DANA进行了结构表征。该聚合物较部分水解聚丙烯酰胺相比具有明显的抗温(100℃,粘度保留率:31.55%)抗剪切(1000 s~(-1),粘度保留率:32.31%)以及抗盐性能(11000 mg·L~(-1)NaCl,粘度保留率:41.77%;1500 mg·L~(-1)MgCl_2,粘度保留率:39.83%;1500 mg·L~(-1)CaCl_2,粘度保留率:34.81%;);驱油实验表明该聚合物较水驱相比能够提高原油采收率达12.04%。  相似文献   

6.
强阴离子型丙烯酰胺共聚物P(AM-co-NaAMPS)的结构与性能   总被引:11,自引:0,他引:11  
在水介质中实施了丙烯酰胺 (AM)与 2 丙烯酰胺基 2 甲基丙磺酸钠 (NaAMPS)的溶液共聚合 ,制备了组成系列变化的强阴离子型共聚物P(AM co NaAMPS) ;通过红外光谱法与元素分析法对共聚物的组成进行了表征 ;稀释外推粘度法测定了共聚物的特性粘数及Huggins常数 ;测定了共聚物纯水溶液及盐水溶液的表观粘度及高温下共聚物盐水溶液的粘度保持率 ;重点考察了共聚物的结构与组成对其各种性能的影响规律 .实验结果表明 ,在聚丙烯酰胺 (PAM)分子主链上引入NaAMPS链节后 ,磺酸根的强阴离子性与庞大侧基的位阻效应 ,赋于共聚物P(AM co NaAMPS)以优良的溶解、增稠、耐温与抗盐性能 ,且这些性能随共聚物的结构与组成的改变发生规律性的变化 .  相似文献   

7.
通过自由基聚合合成了丙烯酰胺(AM)/丙烯酸钠(Na AA)/十六烷基二甲基烯丙基氯化铵(C16-DMAAC)的共聚物AP,丙烯酰胺(AM)/甲基丙烯酰氧乙基三甲基氯化铵(DMC)/C16DMAAC的共聚物DP,并通过红外光谱与1H-NMR对聚合物的结构进行了表征.同时,在10000 mg/L的Na Cl溶液中,将聚合物AP和DP混合后得到复合溶液,通过黏度、流变及荧光测试探究了2种带相反电荷聚合物之间的协同效应及机理.表观黏度测试表明,当AP与DP的质量比为7∶3时,复合溶液的表观黏度远高于AP和DP溶液的表观黏度,说明聚合物之间产生了显著的协同效应.当p H=6~8时,聚合物AP和DP溶液之间的协同效应较强.当聚合物浓度为2000 mg/L,Na Cl浓度为15000 mg/L时,AP和DP的表观黏度分别为19.9、4.2 m Pa·s,而复合溶液的表观黏度高达370.2 m Pa·s,表现出较强的抗盐性能.对比复合溶液与单一聚合物溶液的平台区模量(G0)和特征松弛时间(TR),发现复合溶液缔合点的密度和强度都高于单一聚合物溶液;对比复合溶液及单一聚合物溶液的I3/I1和Ie/Im值,发现复合溶液疏水微区数量高于单一聚合物溶液.  相似文献   

8.
聚烯丙基氯化铵模板对AM/AA共聚物结构的影响   总被引:2,自引:0,他引:2  
采用IR,1H-NMR和13C-NMR研究了聚烯丙基氯化铵(PAAC)模板对丙烯酰胺(AM)/丙烯酸(AA)共聚产物结构的影响,发现这种模板对共聚物P(AM/AA)序列结构和分子量有重要影响.由于共聚合体系中AA单体在PAAC模板聚合物上预组装,使得模板体系共聚物比无模板体系共聚物的AA和AM序列长度显著增加.这种类似多嵌段结构得到pKa′测定的进一步验证.另外模板分子量大小,模板和AA单体摩尔比,AM和AA摩尔比对共聚物结构的影响也进行了研究.应当指出这种模板聚合产物分离模板后仍有少量不能分离掉的PAAC聚合物存在.  相似文献   

9.
在中低渗透高温高盐油藏聚合物驱技术中, 超高相对分子质量聚丙烯酰胺(HPAM)存在不易注入、剪切降粘显著和耐温抗盐性能差等问题。 本文以丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体, 采用过硫酸胺(NH4)2S2O8和甲基丙烯酸N, N-二甲氨基乙酯(DMAEMA)作为支化结构复合引发体系, 通过共聚后水解工艺, 合成含支化结构耐温抗盐驱油共聚物P(AM/AMPSNa/AANa)。 研究了引发温度、链转移剂用量、引发剂用量对共聚物特性黏数的影响, 并通过红外光谱(IR)和13C NMR表征了产物结构。 筛选特性黏数1915 mL/g左右的共聚物, 进行性能评价。 实验结果表明, 共聚物具有优异的耐温抗盐性能、抗剪切性能、抗老化性、注入性和驱油性能, 可应用在中低渗透高温高盐油藏三次采油中。  相似文献   

10.
聚丙烯酰胺稀溶液的分子模拟   总被引:2,自引:0,他引:2  
聚丙烯酰胺(PAM)是一类重要的线性水溶性聚合物,具有"百业助剂"之称,因此对其溶液性质的研究意义重大.在溶液质量浓度约为1g·mL-1的基础上,分别构建了含有不同水分子数的溶液模型.采用分子动力学(MD)方法模拟分析了不同温度下非离子型的聚丙烯酰胺(PAM-H)和阴离子型的聚丙烯酰胺(HPAM)在纯水溶液及含不同质量分数NaCl的水溶液中的回旋半径(Rg).结果发现,不同温度下PAM-H和HPAM的抗盐性能的模拟结果与实验数据基本吻合,水分子数不同的溶液模型所得模拟结果趋势没有明显变化,为了提高模拟效率,选取含有2000个水分子的溶液模型分析HPAM链中氧负离子及氧原子的径向分布函数,从微观结构模拟说明了HPAM水溶液粘度随NaCl质量分数增加而减小,且HPAM比PAM-H具有较好的增粘效果及较差的抗盐性能的原因.  相似文献   

11.
Abstract

This paper reports a new polymer flooding agent used for enhanced oil recovery (EOR), poly(acrylamide-acrylic acid) [P(AM-AA)]/poly(acrylamide-dimethyldiallylammonium chloride) [P(AM-DMDAAC)] polyelectrolyte complex. The solution viscosity of prepared P(AM-AA)/P(AM-DMDAAC) complex is enhanced due to the strong interaction between the two oppositely charged copolymers, i.e., P(AM-AA) and P(AM-DMDAAC), which were prepared through radical copolymerization. The ionic content could be controlled by changing the reaction conditions. The structures of the two copolymers were characterized through FT-IR, 1H NMR, and acidic and precipitation titration. The formation as well as the factors affecting the P(AM-AA)/P(AM-DMDAAC) polyelectrolyte complex were investigated by means of viscosity measuring and light transmittance testing. The experimental results show that the composition of the copolymers, the pH value, and the concentration of the polymer solutions have remarkable effects on the formation of P(AM-AA)/P(AM-DMDAAC) polyelectrolyte complex and the solution viscosity. When DMDAAC content in P(AM-DMDAAC) is 3.2 mol%, AA content in P(AM-AA) is 48–58 mol%, the weight ratio of P(AM-AA) to P(AM-DMDAAC) is 70/30–30/70, the pH value of the solution is 6–10, and the concentration of solution is 1000–3500 ppm, then a homogeneous solution of P(AM-AA)/P(AM-DMDAAC) poly-electrolyte complex could be obtained which exhibits a much higher solution viscosity compared with its components.  相似文献   

12.
The basic feature of polymers is their multi-order structure. Structure change at each level offers a possibility tomodify polymer properties and to develop new polymer materials. Therefore,novel polymer materials can be developed by tailoring their chain structure through chemical bonding among atoms, i.e., via the traditional molecular chemistry methods, e.g., polymerization of new monomer, controlling chain length (molecular weight and molecular weight distribution) and stereoregularity, copolymerization of different kinds of monomers, controlling sequence distribution,block of graft length of copolymer, etc., which have been the focus of polymer chemistry for several decades, as well as by tailoring specific supramolecular architecture using molecules as building block through intermolecular interactions, i.e., via supramolecular science methods, e.g., molecular self-assembly, intermacromolecular complexation, etc., which is a modern and fast-developing academic research field.This paper reports novel polymer materials prepared through intermacromolecular complexation,e.g., a new polymer solid electrolyte poly(metyl methacrylate-methacrylic acid)[P(MMA-MAA)]/poly(ethylene oxide) (PEO)/A2-LiClO4 developed by intermacromolecular complexation through hydrogen bonding, which has enhanced ambient ionic conductivity and fairly good mechanical and film-forming properties, a new polymer microcomposite poly(acrylonitrile-acrylamide-acrylic acid) [P(AN-AM-AA)]/poly(vinyl alcohol) (PVA) reinforced by the twin molecular chain microfibrils formed through intermacromolecular complexation of P(AN-AM-AA) with PVA through hydrogen bonding, which exhibits much better mechanical properties than its constituents and could be used to manufacture PVA based complexed fibers with higher modulus and better dyeability, a new polymer flooding agent poly(acrylamide-acrylic acid)[P(AM-AA)]/poly(acrylamide- dimethyldiallylammonium chloride) [P(AM-DMDAAC)] developed by intermacromolecular complexation of the oppositely charged polyions through Coulomb forces,which shows much higher viscosity and better resistance to temperature, shear rate and salt than its constituents, and has potential application in enhanced oil recovery.  相似文献   

13.
分子复合法制备新型聚合物驱油剂CMC/P(AM-DMDAAC)   总被引:6,自引:0,他引:6  
通过具有互补结构的阴离子聚合物羧甲基纤维素(CMC)与阳离子聚合物聚(丙烯酰胺-二甲基二烯丙基氯化铵)[P(AM-DMDAAC)]间的聚电解质分子复合作用,制备了分子复合型CMC/P(AM-DMDAAC)新型驱油剂.电导率测定及紫外光谱分析结果表明,CMC与P(AM-DMDAAC)可以在水相通过库仑力形成均相聚电解质复合溶液.由于分子复合形成的独特超分子结构,复合溶液粘度显著增加,分别为组分聚合物溶液的5.2倍和9.0倍,在高温和高剪切环境中的粘度保持能力也明显优于其组分聚合物.  相似文献   

14.
One of the most widely applied enhanced oil recovery processes is the polymer flooding, in which aqueous solution of polymer viscosifier is introduced in oil reservoirs to increase the recuperation of the remaining oil. From the current challenges of this process, it can be referred to a high cost of materials regarding their substantially required amount and the low impact on the mobility ratio during the process due to the reduction of solution viscosity at high temperatures and high salinity environments. The purpose of this study is to investigate the concept of acrylamide-based thermosassociating copolymer (TAP), with a specific morphology and chemistry (hydrophilic main backbone made of polyacrylamide with grafted amide functionalized pending chains) as viscosity enhancer at harsh conditions of high temperature and salinity. For that aim, a specific TAP microstructure was targeted (very high molar mass linear polymer chains with improved copolymer homogeneity). It is achieved in this study throughout applying the reaction engineering approach, such as synthesis in semi-batch mode or/and in heterogeneous dispersed media. As a result, the synthesized TAP presented excellent behavior as viscosity enhancer especially under high temperature and salinity conditions with improved performance in comparison to TAP synthesized by a conventional solution polymerization approach and to actual commercial high molar mass acrylamide-based polymer.  相似文献   

15.
Although alkaline/surfactant/polymer (ASP) flooding is successfully applied in oil fields, some disadvantages such as scales, corrosion effects, and viscosity reductions of polymer solutions appear. Usage of organic alkalis can avoid or decrease these disadvantages. In this paper, the physicochemical properties, including interfacial tension (IFT), and viscosity, of organic alkali combinational flooding solutions and their effectiveness as enhanced oil recovery agents are investigated. Monoethanolamine (MEA) is the optimal one for decreasing the IFT among the three organic alkalis studied in this paper. Although MEA cannot decrease the IFT as low as NaOH does, it has good compatibility with both surfactant and the polymer hydrolyzed polyacrylamide (HPAM). MEA not only helps a surfactant solution or HPAM/surfactant mixture attain ultralow IFT values, but can also promote better viscosity stability for HPAM or HPAM/surfactant solutions compared to NaOH. Moreover, core flood experiments show that adding MEA can obtain additional tertiary oil recovery of 6%–10% original oil in place (OOIP) on the top of HPAM or HPAM/surfactant flooding, although MEA has a lower enhanced oil recovery than NaOH. The experimental results show that MEA is a good choice to replace NaOH in enhancing heavy oil recovery.  相似文献   

16.
To investigate the mechanisms of enhancing oil recovery and the flow behaviors of foamed gel in porous media, foamed gels with characteristics of excellent strength and viscosity were prepared with polymer, crosslinking agent, foam agent, and formation water. The breakthrough-vacuum method and a rotary viscometer were used to evaluate the strength and viscosity of foamed gel. Coreflooding and pore-level visualization experiments were performed in heterogeneous reservoir models. Laboratory results illustrate that high strength and viscosity of foamed gel can be prepared by 0.15% NJ-8, 0.2% polyacrylamide solution, and 1.5% foaming agent. The strength and viscosity of the foamed gel reached 0.06 MPa and 10,000 MPa · s, respectively. The results of coreflooding experiments in heterogeneous cores show that oil recovery can be improved by approximately 36.9% after injecting 0.3 pore volume of the foamed gel, and enhanced oil recovery is mainly attributed to the improving sweep efficiency of mid- to low-permeability layers. Images of visualization flooding demonstrate that foamed gel exhibits good oil resistance and elasticity when used with crude oil. Furthermore, the new amoeba effect, Jamin effect, fluid-diverting effect, and extruding effect between foamed gel and oil in porous media can enhance oil recovery by improving sweep efficiency.  相似文献   

17.
聚电解质与表面活性剂相互作用研究已有很多报道[1~4],由于在很多方面与生物膜中脂质体-蛋白质间相互作用相似,从而近年来备受关注[5~6].作为带电荷的水溶性高分子,聚电解质与带相反电荷的表面活性剂分子可以形成规整性非常好的聚电解质表面活性剂复合物.Antoniettti等报道聚丙烯酸与十六烷基三甲基溴化铵(CTAB)形成规整的介规相(Mesophase)聚电解质表面活性剂复合物结构[7],漆宗能等在同一体系既观察到了热致液晶也观察到了溶致液晶[8].在研究甲基丙烯酸3磺酸丙酯钾盐(SPMS)的苯乙烯(St)共聚物(P(SPM…  相似文献   

18.
选择低分子量端羟基聚二甲基硅氧烷(PDMS-OH)与聚(甲基丙烯酸甲酯-co-丙烯酸β-羟乙酯)P(MMA-co-HEA)共聚物原位复合形成氢键复合物,该复合物表现出良好的形状记忆效应.通过FTIR,SEM对材料的结构和形貌进行表征,DMA表征材料的动态力学行为,并通过弯曲实验对材料的形状记忆性能进行了表征及比较.FTIR分析证明PDMS-OH与P(MMA-co-HEA)共聚物形成氢键缔合作用;SEM分析显示,随着PDMS-OH含量的升高,氢键复合物由"海-岛"相分离结构向反转相分离结构转变;DMA分析结果表明,氢键的引入有利于复合物获得更高的模量比;形状记忆性能测试结果显示该氢键复合物具有良好的形状记忆性能,形状记忆固定率超过98%、形变恢复率超过99%,并且与聚(甲基丙烯酸甲酯-co-丙烯酸乙酯)/PDMS-OH(P(MMA-co-EA)/PDMS-OH)复合物相比,氢键复合物显示出更快的形变回复速率.  相似文献   

19.
In order to utilize the produced liquid of hydrolyzed polyacrylamide (HPAM) flooding to enhance oil recovery, the interaction between hydrophobically modified polyacrylamide (HMPAM) and the produced liquid of HPAM flooding was investigated. The viscous characteristic of HMPAM in aqueous solution was investigated by Ubbelohde viscometer. The results show the intrinsic viscosity of HMPAM in aqueous solution is higher than that of HPAM, indicating that HMPAM has better effect on increasing the viscosity of aqueous solution. The viscosity of the complex system consisted of HMPAM and the produced liquid from HPAM flooding is lower than that of the HMPAM system, but higher than that of the HMPAM/HPAM complex system in mineralized water. In order to investigate the major factor of the influence on the viscosity of the HMPAM/produced liquid complex system, the viscosities of HMPAM/HPAM (and hydrolyzed HPAM with different hydrolysis degree) in distilled water and in mineralized water were studied. The fluorescence spectrum and transmission electron microscopy measurements were carried out to investigate the interaction between HPMAM and produced liquid from a microscopic perspective. These results are useful for farther enhancing oil recovery after HPAM flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号