首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
TiAl合金作为新型轻质高温结构材料,其熔炼及制备技术难度大、铸态组织较粗大、室温塑性较低和高温抗氧化能力的不足成为限制其应用的关键。从材料制备成形和合金成分两个角度综述稀土元素Y在TiAl基合金中应用的研究进展,总结国内外对Y_2O_3陶瓷坩埚和型壳面层在TiAl合金熔炼和精密铸造及制备成形过程中的研究进展;阐述稀土元素Y在合金中的形态与分布及其对合金铸态组织的细化及作用机理,并分析Y对合金室温力学性能和抗氧化性能的影响,对Y在TiAl基合金中的进一步研究应用提出建议。  相似文献   

2.
利用Gleeble-1500D热模拟试验机研究了Ti-44Al、Ti-44Al-6Nb和Ti-44Al-6Nb-1Cr-2V合金在1 100~1 250℃和0. 01 s-1条件下的热变形行为。研究结果表明,添加β相稳定元素可降低TiAl合金的流变应力,在相同变形条件下Ti-44Al-6Nb-1Cr-2V合金具有更低的峰值应力。高温变形时,TiAl合金主要发生片层弯曲和拉长协调变形,以及片层团晶界处动态再结晶和B2相协调变形。动态再结晶程度随着变形温度的升高以及β相稳定元素含量的提高而增加,B2相协调变形和促进动态再结晶是TiAl合金的主要软化方式。添加β相稳定元素和控制B2相含量能有效改善TiAl合金热加工性能。  相似文献   

3.
对利用非自耗电弧熔炼设备得到的Ti-46Al,Ti-46Al-0.3B,Ti-46Al-0.5B,Ti-46Al-2Fe,Ti-46Al-2Fe-0.3B和Ti-46Al-2Fe-0.5B合金的凝固组织进行了研究。结果表明,铸态TiAl基合金的宏观组织为典型的柱状晶组织,而且平均柱状晶直径随着Fe和B元素的加入显著减小。其中,Ti-46Al-2Fe-0.5B合金的柱状晶直径最小。B元素可以显著地细化TiAl基合金的柱状晶组织和枝晶组织,这主要是由于B元素的添加可以显著增加固液界面前沿的成分过冷度从而细化TiAl基合金的凝固组织。而且,Fe元素的添加还可以显著地提高B元素对TiAl基合金的柱状晶组织的细化效果。  相似文献   

4.
对利用非自耗电弧熔炼设备得到的Ti-46Al,Ti-46Al-0.3B,Ti-46Al-0.5B,Ti-46Al-2Fe,Ti-46Al-2Fe-0.3B和Ti-46Al-2Fe-0.5B合金的凝固组织进行了研究。结果表明,铸态TiAl基合金的宏观组织为典型的柱状晶组织,而且平均柱状晶直径随着Fe和B元素的加入显著减小。其中,Ti-46Al-2Fe-0.5B合金的柱状晶直径最小。B元素可以显著地细化TiAl基合金的柱状晶组织和枝晶组织,这主要是由于B元素的添加可以显著增加固液界面前沿的成分过冷度从而细化TiAl基合金的凝固组织。而且,Fe元素的添加还可以显著地提高B元素对TiAl基合金的柱状晶组织的细化效果。  相似文献   

5.
研制出1种细晶的8.5Nb-TiAl基合金,化学成分为Ti-45Al-8.5Nb-0.3W-0.3B(TAWBY),铸态组织的晶粒度约为25μm。合金中含有一定量的B2 ω相,B2相和ω相的位相关系(110)B2/(0001)ω和[111]B2//[112^-0]ω。同时,对TAWBY合金的变形试样进行了1250℃,1h和1310℃,0.5h真空退火处理,分别获得了DP和FL组织。对2种组织的试样进行了室、高温拉伸和三点弯曲KIC测试,分析了变形TAWBY合金与K5合金等第3代TiAl基合金的力学性能。结果表明,在760℃~870℃下,高温拉伸性能已达到第3代TiAl基合金的性能。  相似文献   

6.
采用机械合金化结合粉末冶金技术制备了Ti-44.7Al-xW(at%)合金材料.采用透射电镜、扫描电镜和金相显微镜研究不同W添加量对机械合金化TiAl基合金的显微组织和高温抗氧化性能的影响,并对合金的力学性能进行测试.研究表明,通过机械合金化在TiAl基合金系统中添加微量W元素会形成新的固溶体相,这种新成分相大大提高TiAl基合金的抗弯强度σb.当W添加量为1.0at%时,σb达到峰值;随后随着W含量的增加,抗弯强度降低.W元素的添加有效的制约了合金基体的内部氧化,使TiAl合金的高温抗氧化性能明显提高.  相似文献   

7.
本文研究了Ti-45Al-8.5Nb-(W,B,Y)合金热变形过程中的晶界特征和显微组织演化规律。采用等离子冷床炉熔炼制备的Ti-45Al-8.5Nb-(W,B,Y)合金具有典型的近片层组织并在晶界有高温β/B2相残留,富Nb、W、Ti等、贫Al的晶界β/B2相主要是熔炼过程中因冷速较快、β稳定元素的低扩散系数以及合金中各元素的分配系数差异导致β → α相变不能完全进行。合金中的 B 和Y等微量元素分别以硼化物和Y2O3的形式存在。晶界β/B2相的形态、尺寸、成分和稳定性等受后续热变形影响显著,高温和应力作用会使β相发生破碎细化并促进合金中的元素扩散会引起晶界β/B2相的成分变化。当合金在 (α + γ) 两相区进行热压缩变形时,会有部分β相向α相转变(β/B2 → α2),主要通过β相中二次α的析出和β相被相邻α相的蚕食等方式进行,热压缩变形会促进β/B2相向更为密排结构的α2相转变。  相似文献   

8.
β相可以提高TiAl金属间化合物的塑性。通过显微组织分析和变形行为的评估研究β稳定性元素Fe和Mo对Ti-45Al-xFe-yMo(x,y=1,2,3,4)合金的影响。结果表明:合金中的B2(β)相随着Fe和Mo元素含量的增加而增多,Mo表现出强的β稳定性。加入3%Fe和2%Mo后,合金的晶粒得到细化,其尺寸达到12-m。由于具有一定量的β相,细化后的Ti-45Al-3Fe-2Mo合金在790℃具有良好的塑性。  相似文献   

9.
γ-TiAl基合金密度低,并具有较高的高温强度,良好的抗氧化性能和抗蠕变能力,被认为是一种极具应用潜力的高温结构材料.但由于该合金的室温塑、韧性较差,限制了其在实际中的应用.对此,材料科学工作者进行了大量的研究,在不断加深对TiAl合金变形机理的了解基础上,采用合金化、不同的热处理工艺等手段,使得该合金的室温塑、韧性等均得到了一定的提高.然而,作为高温结构材料,对γ-TiAl基会金的高温性能的研究不容忽视.其中,高温氧化是TiAl合金高温下的一个重要失效模式,提高γ-TiAl合金高温氧化的极限温度也是提高该合金…  相似文献   

10.
采用机械合金化结合粉末冶金技术制备了Ti-44.7A1-xW(at%)合金材料。采用透射电镜、扫描电镜和金相显微镜研究不同W添加量对机械合金化TiAl基合金的显微组织和高温抗氧化性能的影响,并对合金的力学性能进行测试。研究表明,通过机械合金化在TiAl基合金系统中添加微量W元素会形成新的固溶体相,这种新成分相大大提高TiAl基合金的抗弯强度σb当W添加量为1.0at%时,σb达到峰值;随后随着W含量的增加,抗弯强度降低。W元素的添加有效的制约了合金基体的内部氧化,使TiAl合金的高温抗氧化性能明显提高。  相似文献   

11.
研究了元素Y和Nb对用熔体快淬法制备的TiAl基快速凝固合金组织及性能的影响。发现添加Y的快速凝固TiAl合金主要为等轴晶,主要组成相为α2和少量的γ相。随着Y含量的增加,γ相的含量增加,快速凝固TiAl合金的组织逐渐细化。不同Nb含量的快速凝固TiAl合金的组织为块状结构和层片状结构,主要由γ和α2两相组成,层片间距显著细化,为15~17nm。快速凝固TiAl合金的硬度比其铸态合金显著提高。  相似文献   

12.
TiAl合金的热加工(锻造、热挤压、板材轧制等)窗口窄,高温变形能力差,室温脆性大等成为限制其应用的关键因素,本文主要综述了合金成分对TiAl合金热变形加工以及超塑性成形影响等方面的研究现状,从TiAl合金的晶体结构、β相含量、显微组织细化、热变形激活能四个方面探讨了合金成分对TiAl合金热变形加工的影响,并指出合金化方式提高TiAl合金热变形加工能力应该遵循的几点原则,以及TiAl合金热变形加工的未来发展趋势。  相似文献   

13.
TiAl合金的热加工(锻造、热挤压、板材轧制等)窗口窄、高温变形能力差、室温脆性大等成为限制其应用的关键因素,本文主要综述了合金成分对TiAl合金热变形加工以及超塑性成形影响等方面的研究现状,从TiAl合金的晶体结构、β相含量、显微组织细化、热变形激活能4个方面探讨了合金成分对TiAl合金热变形加工的影响,并指出合金化方式提高TiAl合金热变形加工能力应该遵循的几点原则,以及TiAl合金热变形加工的未来发展趋势。  相似文献   

14.
采用冷坩埚悬浮熔炼技术制备Nb、Mo合金化的TiAl基合金,研究合金在大气环境中的高温长时氧化行为。采用X射线衍射、扫描电镜及能谱分析研究氧化层的相结构、显微组织及与基体合金的界面特征,结合氧化动力学测试研究Nb、Mo对TiAl基合金高温抗氧化行为的协同效应。结果发现,Nb、Mo协同作用较单一元素合金化的TiAl合金具有更为优良的高温抗氧化性,连续致密且与基体良好结合的氧化膜可明显降低合金的氧化速率、减小氧化增重。Nb、Mo掺杂的TiAl基合金氧化层可阻止氧原子向内扩散,Nb、Mo的协同效应有助于改善TiAl基合金的高温抗氧化性。  相似文献   

15.
Nb和Al对γ-TiAl基合金高温强度的影响   总被引:2,自引:0,他引:2  
研究了Nb对γ TiAl基合金性能的影响 ,结果表明 ,高Nb合金化能大大提高γ TiAl基合金的高温强度 ,合金含Nb量越高 ,强度就越高。TEM观察表明 ,Nb对γ TiAl性能的影响类似于氧元素 ,增强d—d键的方向性 ,增加普通位错的P N力 ,提高普通位错开动的临界分切应力和滑移阻力。Al对γ TiAl合金性能的影响是通过影响合金中的α2 相含量来影响其性能的。随合金中Al含量升高 ,α2 相含量减少 ,位错运动非热激活阻力降低 ,合金的强度下降。  相似文献   

16.
TiAl合金具有低密度、高比刚、高比强、优异的高温力学性能等优点,在航空航天领域极具广阔的应用前景。然而,由于该合金低的室温塑性、损伤容限及加工性能,导致其制造成本较高,限制了应用领域。均匀细小的显微组织可以显著改善TiAl合金的室温塑性及加工性能。本文综述了高温淬火获得亚稳组织转变并细化TiAl合金组织的相关研究,如块状γM相、马氏体α′相及全B2相转变等。在回火过程中,亚稳组织的分解可以细化合金组织,亚稳组织过冷度越大,析出相形核率越高,晶粒细化效果更为显著。讨论了各种组织细化方法存在的问题和对力学性能的影响。  相似文献   

17.
为了探究V和B元素复合添加对β型γ-TiAl合金的显微组织和变形机制产生的影响,本工作针对Ti-44Al-5Nb-1Mo合金和Ti-44Al-5Nb-1Mo-2V-0.2B合金,进行了不同温度和应变速率条件下的高温热压缩实验,利用SEM-BSE和TEM对组织进行表征,对比分析了其变形后的显微组织,研究了添加V和B对Ti-44Al-5Nb-1Mo合金的显微组织及热变形机制的影响。结果表明,2种Ti Al合金的显微组织差异较大,添加V和B可以显著改变TiAl合金对热变形的敏感性。Ti-44Al-5Nb-1Mo-2V-0.2B合金高温变形能力明显优于Ti-44Al-5Nb-1Mo合金。Ti-44Al-5Nb-1Mo合金的高温热变形以难变形片层团的偏转、变形带的产生为主,温度为1250℃时,其变形组织表现出较高的温度和应变速率敏感性,极易形成尺寸不均匀的近片层组织;对于Ti-44Al-5Nb-1Mo-2V-0.2B合金而言,升高变形温度或降低应变速率,既可以促进片层团内部的变形诱导L(α/γ)→α+γ+β/B2和γ→α相变,又可以促进α和β/B2相的球化/动态再结晶,从而大幅提高该合金的组织均...  相似文献   

18.
提高TiAl基合金室温塑性的方法   总被引:17,自引:6,他引:17  
TiAl基合金具有密度低、高温性能好等优点,但室温塑性低一直是阻碍TiAl基合金应用的重要原因。本文总结了TiAl基合金的室温塑性的主要影响因素,以及通过添加合金化元素、改善加工工艺等方法来控制显微组织、提高TiAl基金合金的室温塑性的研究进展。  相似文献   

19.
周兰章  郭建亭  肖旋  V.Lupinc  M.Maldini 《金属学报》2002,38(11):1175-1180
Ti-45Al-2W-0.5Si-0.5B(ABB-23)铸造合金在800和900℃长期时效过程中发生组织失稳,包括α2板条断裂和合并,α2相转变为B2相,针状B2相球化和长大,γ等轴晶的生成以及片层间距的增加。ABB-23合金的热稳定性优于无B的ABB-2合金,表明添加B有利于提高合金的热稳定性。ABB-23合金在700-800℃范围内的抗蠕变能力超过同比密度的抗热腐蚀高温合金IN738LC,具有优异的高温蠕变性能。此外,还对比了ABB-23合金与其他几种TiAl基合金的高温蠕变性能。  相似文献   

20.
微量C,B对高铌TiAl合金显微组织与力学性能的影响   总被引:3,自引:1,他引:3  
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等设备,以及拉伸和蠕变试验系统研究微量间隙元素C,B对高铌TiAl合金显微组织与力学性能的影响。微量B元素对高铌TiAl合金没有明显的强化作用,但是微量B元素在合金中以条状或点状的TiB2存在,TiB2细化了高铌TiAl合金原始片层团晶粒,对改善高铌TiAl合金片层组织的室温塑性有利。加微量C元素的高铌TiAl合金在长时间的蠕变过程中,大量Ti3AlC沉淀相的析出提高了高铌TiAl合金全片层组织蠕变抗力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号