首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three ancillary amido moieties in the cationic complex [(Et2N)3U][BPh4] are highly reactive and are easily replaced when the complex is treated with primary amines. The reaction of [(Et2N)3U][BPh4] with excess tBuNH2 allows the formation of the cationic complex [(tBuNH2)3(tBuNH)3U][BPh4]. X-ray diffraction studies on the complex indicate that three amido and three amine ligands are arranged around the cationic metal center in a slightly distorted octahedral mer geometry. The cationic complex reacts with primary alkynes in the presence of external primary amines to primarily afford the unexpected cis dimer and, in some cases, the hydroamination products are obtained concomitantly. The formation of the cis dimer is the result of an envelope isomerization through a metal-cyclopropyl cationic complex. In the reaction of the bulkier alkyne tBuC identical to CH with the cationic uranium complex in the presence of various primary amines, the cis dimer, one trimer, and one tetramer are obtained regioselectively, as confirmed by deuterium labeling experiments. The trimer and the tetramer correspond to consecutive insertions of an alkyne molecule into the vinylic CH bond trans to the bulky tert-butyl group. The reaction of (TMS) C identical to CH with the uranium catalyst in the presence of EtNH2 followed a different course and produced the gem dimer along with the hydroamination imine as the major product. However, when other bulkier amines were used (iPrNH2 or tBuNH2) both hydroamination isomeric imines Z and E were obtained. During the catalytic reaction, the E (kinetic) isomer is transformed into the most stable Z (thermodynamic) isomer. The unique reactivity of the alkyne (TMS) C identical to CH with the secondary amine Et2NH is remarkable because it afforded the trans dimer and the corresponding hydroamination enamine. The latter probably results from the insertion of the alkyne into a secondary metal-amide bond, followed by protonolysis.  相似文献   

2.
The tetrahydroborate OsH(η(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (1) reacts with aniline and p-toluidine to give the aminoboryl derivatives [chemical structure: see text] (R = H (2), CH(3) (3)) and four H(2) molecules. Treatment of 2 and 3 with phenylacetylene gives Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (4), CH(3) (5)), which react with HBF(4) to afford the amino(fluoro)boryl species Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (6), CH(3) (7)). In contrast to HBF(4), the addition of acetic acid to 4 and 5 induces the release of phenylacetylene and the formation of the six-coordinate derivatives Os{B(NHC(6)H(4)R)(2)}(κ(2)-O(2)CCH(3))(CO)(P(i)Pr(3))(2) (R = H (8), CH(3) (9)). The coordination number six for 4 and 5 can be also achieved by addition of CO. Under this gas Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (10), CH(3) (11)) are formed. In toluene, these alkynyl-aminoboryl compounds evolve into the aminoborylvinylidenes Os{═C═C(Ph)B(NHC(6)H(4)R)(2)}(CO)(2)(P(i)Pr(3))(2) (R = H (12), CH(3) (13)) via a unimolecular 1,3-boryl migration from the metal to the C(β) atom of the alkynyl ligand. Similarly to 4 and 5, complexes 6 and 7 coordinate CO to give Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (15), CH(3) (16)), which evolve to Os{═C═C(Ph)BF(NHC(6)H(4)R)}(CO)(2)(P(i)Pr(3))(2) (R = H (17), CH(3) (18)).  相似文献   

3.
Yi W  Zhang J  Li M  Chen Z  Zhou X 《Inorganic chemistry》2011,50(22):11813-11824
The structurally characterized Tp(Me2)-supported rare earth metal monoalkyl complex (Tp(Me2))CpYCH(2)Ph(THF) (1) was synthesized via the salt-metathesis reaction of (Tp(Me2))CpYCl(THF) with KCH(2)Ph in THF at room temperature. Treatment of 1 with 1 equiv of PhC≡CH under the same conditions afforded the corresponding alkynyl complex (Tp(Me2))CpYC≡CPh(THF) (2). Complex 1 exhibits high activity toward carbodiimides, isocyanate, isothiocyanate, and CS(2); treatment of 1 with such substrates led to the formation of a series of the corresponding Y-C(benzyl) σ-bond insertion products (Tp(Me2))CpY[(RN)(2)CCH(2)Ph] (R = (i)Pr(3a), Cy(3b), 2,6-(i)Pr-C(6)H(3)(3c)), (Tp(Me2))CpY[SC(CH(2)Ph)NPh] (4), (Tp(Me2))CpY[OC(CH(2)Ph)NPh] (5), and (Tp(Me2))CpY(S(2)CCH(2)Ph) (6) in 40-70% isolated yields. Carbodiimides and isothiocyanate can also insert into the Y-C(alkynyl) σ bond of 2 to yield complexes (Tp(Me2))CpY[(RN)(2)CC≡CPh] (R = (i)Pr(7a), Cy(7b)) and (Tp(Me2))CpY[SC(C≡CPh)NPh] (9). Further investigation results indicated that 1 can effectively catalyze the cross-coupling reactions of phenylacetylene with carbodiimides. However, treatment of o-allylaniline with a catalytic amount of 1 gave only the benzyl abstraction product (Tp(Me2))CpY(NHC(6)H(4)CH(2)CH═CH(2)-o)(THF) (10), without observation of the expected organic hydroamination/cyclization product. All of these new complexes were characterized by elemental analysis and spectroscopic properties, and their solid-state structures were also confirmed by single-crystal X-ray diffraction analysis.  相似文献   

4.
A metal-coordination-driven self-assembly using the predesigned building block has been developed. Herein, the catalytic active NHC–Cu(I) units were introduced into the terpyridine metal coordination polymers. The self-assembled architecture, as a heterogeneous catalyst, was successfully used to catalyze the A3-coupling reaction of aldehyde, alkyne, and amine and Huisgen 1,3-dipolar cycloaddition reaction of azide and alkyne in high yields.  相似文献   

5.
The picolyl-substituted NHC complex [Au(im(CH(2)py)(2))(2)]PF(6) (1) reacts with two equivalents of copper(I) halides, affording compounds [Au(im(CH(2)py)(2))(2)(CuX)(2)]PF(6) (X = Cl, 2; Br, 3; I, 4). Each complex contains a nearly linearly coordinated [Au(NHC)(2)](+) center where the two picolyl groups on each im(CH(2)py)(2) ligand chelate a single copper atom. The Cu(I) center resides in a distorted tetrahedral environment and is coordinated to two pyridyl groups, a halide ion, and a gold metalloligand. The Au(I)-Cu(I) separations measure 2.7030(5), 2.6688(9), and 2.6786(10) ? for 2-4, respectively. Additionally, each Cu(I) center is further coordinated by a semibridging NHC ligand with short Cu-C separations of ~2.3 ?. In solution, these complexes dissociate the Cu(I) ion. In the solid state, 2-4 are photoluminescent with respective emission maxima of 512, 502, and 507 nm. The reaction of [Au(im(CH(2)py)(2))(2)]PF(6) with four equivalents of CuBr afforded the coordination polymer {[AuCu(2)Br(2)(im(CH(2)py)(2))(2)]Br·3CH(3)CN}(n) (5). This polymeric complex contains [Au(NHC)(2)](+) units interconnected by Cu(2)Br(2) dimers. In 5, the Au-Cu separations are long at 4.23 and 4.79 ?, while the Cu-Cu distance is considerably shorter at 2.9248(14) ?. In the solid state, 5 is photoluminescent with a broad band appearing at 533 nm.  相似文献   

6.
Treatment of a dinuclear Ru(II) amido complex [Cp*Ru(mu2-NHPh)]2 (Cp* = eta5-C5Me5) with small organic substrates including CO, tert-butyl isocyanide, a sulfur ylide Ph2S=CH2, and diphenylacetylene resulted in an unexpected disproportionation reaction of the bridging amido ligands to produce a free amine and a series of imido-bridged diruthenium complexes [(Cp*Ru)2(mu2-L)(mu2-NPh)] (L = CO, t-BuNC, CH2). In the case of diphenylacetylene, the bridging imido ligand underwent subsequent coupling reaction with the coordinated alkyne to form an iminoalkenyl complex [(Cp*Ru)2(mu2-PhNCPhCPh)].  相似文献   

7.
Song LC  Li YL  Li L  Gu ZC  Hu QM 《Inorganic chemistry》2010,49(21):10174-10182
Three series of new Ni/Fe/S cluster complexes have been prepared and structurally characterized. One series of such complexes includes the linear type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (1-6; R = Et, t-Bu, n-Bu, Ph; diphosphine = dppv, dppe, dppb), which were prepared by reactions of monoanions [(μ-RS)(μ-CO)Fe(2)(CO)(6)](-) (generated in situ from Fe(3)(CO)(12), Et(3)N, and RSH) with excess CS(2), followed by treatment of the resulting monoanions [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](-)with (diphosphine)NiCl(2). The second series consists of the macrocyclic type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [μ-S(CH(2))(4)S-μ][(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (7-9; diphosphine = dppv, dppe, dppb), which were produced by the reaction of dianion [{μ-S(CH(2))(4)S-μ}{(μ-CO)Fe(2)(CO)(6)}(2)](2-) (formed in situ from Fe(3)(CO)(12), Et(3)N, and dithiol HS(CH(2))(4)SH with excess CS(2), followed by treatment of the resulting dianion [{μ-S(CH(2))(4)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2-) with (diphosphine)NiCl(2). However, more interestingly, when dithiol HS(CH(2))(4)SH (used for the production of 7-9) was replaced by HS(CH(2))(3)SH (a dithiol with a shorter carbon chain), the sequential reactions afforded another type of macrocyclic Ni/Fe/S complex, namely, the (diphosphine)Ni-bridged quadruple-butterfly Fe/S complexes [{μ-S(CH(2))(3)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2)[Ni(diphosphine)](2) (10-12; diphosphine = dppv, dppe, dppb). While a possible pathway for the production of the two types of novel metallomacrocycles 7-12 is suggested, all of the new complexes 1-12 were characterized by elemental analysis and spectroscopy and some of them by X-ray crystallography.  相似文献   

8.
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.  相似文献   

9.
C(2)-symmetric bis(oxazolinato)lanthanide complexes of the type [(4R,5S)-Ph(2)Box]La[N(TMS)(2)](2), [(4S,5R)-Ar(2)Box]La[N(TMS)(2)](2), and [(4S)-Ph-5,5-Me(2)Box]La[N(TMS)(2)](2) (Box = 2,2'-bis(2-oxazoline)methylenyl; Ar = 4-tert-butylphenyl, 1-naphthyl; TMS = SiMe(3)) serve as precatalysts for the efficient enantioselective intramolecular hydroamination/cyclization of aminoalkenes and aminodienes. These new catalyst systems are conveniently generated in situ from the known metal precursors Ln[N(TMS)(2)](3) or Ln[CH(TMS)(2)](3) (Ln = La, Nd, Sm, Y, Lu) and 1.2 equiv of commercially available or readily prepared bis(oxazoline) ligands such as (4R,5S)-Ph(2)BoxH, (4S,5R)-Ar(2)BoxH, and (4S)-Ph-5,5-Me(2)BoxH. The X-ray crystal structure of [(4S)-(t)BuBox]Lu[CH(TMS)(2)](2) provides insight into the structure of the in situ generated precatalyst species. Lanthanides having the largest ionic radii exhibit the highest turnover frequencies as well as enantioselectivities. Reaction rates maximize near 1:1 BoxH:Ln ratio (ligand acceleration); however, increasing the ratio to 2:1 BoxH:Ln decreases the reaction rate, while affording enantiomeric excesses similar to the 1:1 BoxH:Ln case. A screening study of bis(oxazoline) ligands reveals that aryl stereodirecting groups at the oxazoline ring 4 position and additional substitution (geminal dimethyl or aryl) at the 5 position are crucial for high turnover frequencies and good enantioselectivities. The optimized precatalyst, in situ generated [(4R,5S)-Ph(2)Box]La[N(TMS)(2)](2), exhibits good rates and enantioselectivities, comparable to or greater than those achieved with chiral C(1)-symmetric organolanthanocene catalysts, even for poorly responsive substrates (up to 67% ee at 23 degrees C). Kinetic studies reveal that hydroamination rates are zero order in [amine substrate] and first order in [catalyst], implicating the same general mechanism for organolanthanide-catalyzed hydroamination/cyclizations (intramolecular turnover-limiting olefin insertion followed by the rapid protonolysis of an Ln-C bond by amine substrate) and implying that the active catalytic species is monomeric.  相似文献   

10.
We describe a stepwise synthesis of the hydrido, N-heterocyclic dicarbene iridium(III) pincer complex [Ir(H)I(C(NHC)CC(aNHC))(NCMe)] (3) which features a combination of normal and abnormal NHC ligands. The reaction of the bis(imidazolium) diiodide [(CH(imid)CHCH(imid))]I(2) (1) with [Ir(μ-Cl)(cod)](2) afforded first the mono-NHC Ir(I) complex [IrI(cod)(CH(imid)CHC(NHC))]I (2), which was then reacted with 2 equiv. of Cs(2)CO(3) in acetonitrile at 60 °C for 40 h to yield 3. These observations support our previously proposed mechanism for the formation of hydrido, N-heterocyclic dicarbene iridium(III) pincer complexes from the reaction of bis(imidazolium) salts with weak bases involving a mono-NHC Ir(I) intermediate. We describe the reactivity of the mono-NHC Ir(I) complex 2 under various conditions. By changing the reaction solvent from MeCN to toluene, we observed the cleavage of the imidazol-2-ylidene ring and the formation of an iminoformamide-containing mono-NHC Ir(I) complex [IrI(cod){[NHCH=CHN(Ad)CHO]CHC(NHC)}] (4). Complex 4 was also prepared in high yield from the reaction of 2 with strong bases (potassium tert-butoxide or potassium hexamethyldisilazane), via the initial formation of the complex [IrI(cod)(CH(NHC)CHC(NHC))] (5), which contains a coordinated NHC moiety and a free carbene arm, followed by subsequent hydrolysis of the latter. The bis(imidazolium) salt 1 can be deprotonated by strong bases to form the bis(carbene) ligand C(NHC)CHC(NHC) (6), which readily reacts with [Ir(μ-Cl)(cod)](2) to give the dinuclear complex [{IrI(cod)}(2)(μ-C(NHC)CHC(NHC))] (7), in which the N-heterocyclic bis(carbene) ligand bridges the two metals through the carbene carbon atoms.  相似文献   

11.
We report the use of a P,N-ligand to support a gold complex as a state-of-the-art precatalyst for the stereoselective hydroamination of internal aryl alkynes with dialkylamines to afford E-enamine products. Substrates featuring a diverse range of functional groups on both the amine (ether, sulfide, N-Boc amine, fluoro, nitrile, nitro, alcohol, N-heterocycles, amide, ester, and carboxylic acid) and alkyne (ether, N-heterocycles, N-phthalimide amines, and silyl ethers) are accommodated with synthetically useful regioselectivity.  相似文献   

12.
An N‐heterocyclic carbene substituted by two expanded 9‐ethyl‐9‐fluorenyl groups was shown to bind an AuCl unit in an unusual manner, namely with the Au?X rod sitting out of the plane defined by the heterocyclic carbene unit. As shown by X‐ray studies and DFT calculations, the observed large pitch angle (21°) arises from an easy displacement of the gold(I) atom away from the carbene lone‐pair axis, combined with the stabilisation provided by weak CH???Au interactions involving aliphatic and aromatic H atoms of the NHC wingtips. Weak, intermolecular Cl???H bonds are likely to cooperate with the H???Au interactions to stabilise the out‐of‐plane conformation. A general belief until now was that tilt angles in NHC complexes arise mainly from steric effects within the first coordination sphere.  相似文献   

13.
Mechanistic studies of substrate insertion into dimeric [(NHC)CuH]2 (NHC=N-heterocyclic carbene) complexes with two bridging hydrides have been shown to require dimer dissociation to generate transient, highly reactive (NHC)Cu−H monomers in solution. Using single-crystal to single-crystal (SC-SC) transformations, we discovered a new pathway of stepwise insertion of CO2 into [(NHC)CuH]2 without complete dissociation of the dimer. The first CO2 insertion into dimeric [(IPr*OMe)CuH]2 (IPr*OMe=N,N′-bis(2,6-bis(diphenylmethyl)-4-methoxy-phenyl)imidazole-2-ylidene) produced a dicopper formate hydride [(IPr*OMe)Cu]2(μ-1,3-O2CH)(μ-H). A second CO2 insertion produced a dicopper bis(formate), [(IPr*OMe)Cu]2(μ-1,3-O2CH)(μ-1,1-O2CH), containing two different bonding modes of the bridging formate. These dicopper formate complexes are inaccessible from solution reactions since the dicopper core cleanly ruptures to monomeric complexes when dissolved in a solvent.  相似文献   

14.
The synthesis and characterisation of a series of neutral Au(I) N-heterocyclic carbene complexes [(NHC)AuX] (X = Cl and 2′,3′,4′,6′-tetra-O-acetyl-β-d-glucopyranosyl-1-thiolato) are reported. The chloro complexes were synthesised either by reaction of the appropriate 1,3-dialkylimidazol-2-ylidene with [(Me2S)AuCl] or by transmetallation between the appropriate Ag(I)–NHC complex and [(Me2S)AuCl]. The 2′,3′,4′,6′-tetra-O-acetyl-β-d-glucopyranosyl-1-thiolato complexes were prepared from the appropriate [(NHC)Au(I)Cl] complex and 2′,3′,4′,6′-tetra-O-acetyl-1-thio-β-d-glucopyranose under basic conditions. A cationic Au(I)–NHC triphenylphosphine adduct was also prepared. Structural studies (X-ray diffraction) of a number of the complexes show that in each case the gold atom is (quasi-) linearly two-coordinate, having C–Au–Cl, C–Au–S or C–Au–P coordination. In one case, a new phase of [(Cy2Im)AuCl], the molecules pack pair-wise with a close Au⋯Au interaction (3.1566(6) Å). Preliminary studies show this complex is luminescent in the solid state.  相似文献   

15.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

16.
Coordination of nitric oxide (NO) to a self-assembled monolayer (SAM) of a triruthenium (Ru(3)) cluster, [Ru(3)(micro(3)-O)(micro-CH(3)COO)(6)(CO)(L(1))(L(2))] (0) (L(1) = [(NC(5)H(4))CH(2)NHC(O)(CH(2))(10)S-](2), L(2) = 4-methylpyridine), on a gold electrode surface has been studied by electrochemical and in situ infrared (IR) spectroscopic measurements. Ligand substitution reaction of NO for carbon monoxide (CO) ligands in the SAM strongly depends on the oxidation state of the terminal Ru(3) cluster. NO can be introduced into the Ru(3) cluster in the SAM with a high yield after one-electron oxidation of the Ru(3) core to a (III,III,III) oxidation state, while no coordination reaction occurs at the initial oxidation state (II,III,III) of the Ru(3) cluster. The kinetics of the NO coordination and desorption processes is also evaluated by time-resolved in situ IR spectroscopy. Finally, we demonstrate that the SAM with NO/CO randomly mixed ligands at a desired ratio can be constructed on the gold surface by tuning a suitable oxidation state of the Ru 3 cluster under electrochemical control.  相似文献   

17.
Capretto DA  Brouwer C  Poor CB  He C 《Organic letters》2011,13(21):5842-5845
This work reports the high-yield formation of pyrazoline derivatives mediated by gold(I) catalysts. The reaction utilizes a diaziridine, which has seen only limited usage in organic methodology. Mechanistic studies suggest a gold-mediated opening of the diazridine ring, alkyne insertion, and finally an intramolecular hydroamination to furnish the product.  相似文献   

18.
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))PdCl(2)] (12) and [trans-(kappa(2)-(Mes)CN(H)C(Mes))PdCl(2)] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C(s) symmetry and for 13 rotation of the mesityl groups is prevented. In the related C(1) complex [(kappa(3)-(tBu)CN(H)C(tBu))PdCl][Cl] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12-14 and two equivalents of AgBF(4) in acetonitrile gives the analogous complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))Pd(MeCN)(2)][BF(4)](2) (15), [trans-(kappa(2)-(Mes)CN(H)C(Mes))Pd(MeCN)(2)][BF(4)](2) (16) and [(kappa(3)-(tBu)CN(H)C(tBu))Pd(MeCN)][BF(4)](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors (tBu)C(H)N(Bn)C(H)(tBu)][Cl](2) (2) and [(tBu)C(H)N(H)C(H)(tBu)][BPh(4)](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.  相似文献   

19.
Reaction of the disilyne-NHC complex 1 [RLSi═SiR: (R = Si(i)Pr[CH(SiMe(3))(2)](2), L = NHC)] with MeOTf gave the cation 2 [RLSi═SiRMe](+), which is the first example of a base-stabilized heavy group 14 element analogue with vinyl cation character. Cation 2 has been fully characterized by multinuclear NMR spectroscopy and X-ray diffraction analysis. The molecular structure indicates that there are significant contributions from the NHC-stabilized cationic resonance structure 2A, the disilene-like structure 2B, and even some contribution from the silylene-like structure 2C.  相似文献   

20.
The intermolecular alkoxylation of alkynes is the oldest application of cationic gold(I) catalysts; however, no systematic experimental data about the role of the anion are available. In this contribution, the role of the anion in this catalytic reaction as promoted by a N‐heterocyclic carbene‐based gold catalyst, [(NHC)AuX] (X=BARF?, BF4?, OTf?, OTs?, TFA?, or OAc?) is analyzed, through a combined experimental (NMR spectroscopy) and theoretical (DFT calculation) approach. The most important factor seems to be the ability to abstract the proton from the methanol during the nucleophilic attack, and such ability is related to the anion basicity. On the other hand, too high coordination power or basicity of the anion worsens the catalytic performance by preventing alkyne coordination or by forming too much free methoxide in solution, which poisons the catalyst. The intermediate coordinating power and basicity of the OTs? anion provides the best compromise to achieve efficient catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号