首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以毛豆秸秆、茄子秸秆为原料,KOH为活化剂制备活性炭。采用正交实验对活性炭的制备工艺进行了优化,并研究了该活性炭对正己烷蒸气的吸附、解吸特性。实验结果表明:毛豆秸秆活性炭吸附性能优于茄子秸秆活性炭;毛豆秸秆活性炭最佳制备条件为炭化温度450℃、碱炭质量比为1、活化时间90min、活化温度750℃,此条件下对正己烷蒸气的吸附率为60.44%;茄子秸秆活性炭的最佳制备条件为炭化温度450℃、碱炭质量比为5、活化时间60min、活化温度650℃,此条件下对正己烷蒸气的吸附率为55.60%;二者的吸附率均达到较高水平;随实验次数增加,2种活性炭对正己烷的解吸率升高,而吸附率降低。  相似文献   

2.
以无患子残渣为原料,KOH与K2CO3作为活化剂,采用微波炭化和活化两步法制备超高比表面积活性炭,通过正交实验优化活性炭的制备工艺,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。利用N2吸脱附实验、XRD、FT-IR等实验技术,对制备的活性炭结构与性能进行了表征。结果表明,在碱炭质量比为4∶1、活化温度800℃、活化时间30 min的条件下,所制备的活性炭对亚甲基蓝吸附值为595 mg/g,BET比表面积为3 479 m2/g,吸附累积总孔容达1.8262 cm3/g,平均孔径为2.0997 nm。  相似文献   

3.
以荞麦壳为原料,以KOH活化法制备活性炭,研究了炭化时间、炭化温度对活性炭性能的影响。结果表明:在活化条件不变的情况下,炭化时间和炭化温度对活性炭性能具有重要影响,制备活性炭的较优工艺参数为:炭化时间为3h,炭化温度为500℃。同时,制备得到的活性炭比表面积为1436.047m~2/g,碘吸附值为1528.61mg/g。  相似文献   

4.
椰壳纤维基高比表面积中孔活性炭的制备   总被引:3,自引:0,他引:3  
以椰壳纤维为原料,制备高比表面积中孔活性炭.采用正交试验设计实验方案,研究KOH和NaOH复合活化法制备活性炭的实验方案与工艺条件.考察了活化剂配比、炭化温度、活化温度、时间和升温速率对所制活性炭吸附性能的影响.在最佳工艺条件下,所制活性炭的比表面积达到2032m2/g,中孔发达,特别是2nm~4nm的,中孔比例达到28%.活性炭对的碘吸附值为1435mg/g,亚甲基蓝吸附值为495mg/g,产率为49%.  相似文献   

5.
ZnCl2活化茄子秸秆制备活性炭及表征   总被引:2,自引:0,他引:2  
以茄子秸秆为原料、ZnCl2为活化剂制备活性炭。通过正交实验方法确定了制备活性炭的最佳工艺条件,采用低温氮气吸附、BET、Langmuir和BJH理论对其孔结构进行了表征,利用红外光谱分析样品的表面官能团,扫描电镜观察表面形貌。结果表明以茄杆活性炭的最佳工艺条件:浸渍比为2,浸渍时间为8h,活化温度为550℃,活化时间为60min,所得的活性炭的碘吸附值为1270.06mg/g,亚甲基蓝吸附值为17.4mL/g;BET和Langmuir比表面积分别为1649.615和1851.649m2/g,吸附总孔容为0.488cm3/g,吸附平均孔径为2.241nm。  相似文献   

6.
以马尾藻为原料,采用KOH活化法制备用于超级电容器的生物质基超级活性炭。制备的超级活性炭不仅比表面积巨大,孔隙结构丰富,而且以海藻作为前驱体原料明显降低了活性炭的生产成本。采用单因素实验法分析了浸渍比、活化温度和活化时间对马尾藻基活性炭孔隙结构(比表面积、孔容及孔径分布等)的影响,探索了制备马尾藻基超级活性炭的最佳工艺条件,并研究了所制活性炭用于制备超级电容器时的电化学性能。采用N2吸附-解吸附、SEM、XRD,恒电流充放电以及循环伏安法等表征手段考察超级活性炭样品的比表面积,孔结构以及电化学性能。实验结果表明,制备马尾藻基超级活性炭的最佳工艺条件为:浸渍比4∶1,活化时间120min,活化温度800℃。在该实验条件下制得的活性炭比表面积高达2926m2/g,孔容高达1.536cm3/g,且所有活性炭的孔径大小几乎全部分布在4nm以内,孔径分布均匀。制备的超级电容器以6mol/L的KOH为电解液时,其比电容高达358.5F/g,表现出良好的电化学性能。  相似文献   

7.
以废弃辣椒秸秆为原料,KOH/NaOH为活化剂,采用正交试验,研究了活化温度、时间、炭化温度及KOH/NaOH/C对吸附性能的影响,得出最佳工艺条件即活化温度为700℃、活化时间为80min、炭化温度为450℃、KOH/NaOH/C为3∶1∶1。此条件下制得的样品Langmuir比表面积高达3217.237m2/g,吸附平均孔径为3.590nm,皆高于单一KOH活化样品(SLangmuir=3159.200m2/g,D=2.672nm)。同时采用SEM和FT-IR对KOH/NaOH活化样品的表面形貌和官能团进行分析,并与单一KOH活化样品进行对照,发现它们的化学组成相似,并皆具有丰富和发达的孔隙结构,但KOH/NaOH活化样品出现更多的中孔和一定量的大孔。  相似文献   

8.
KOH作用下稻壳制备高比表面积活性炭的研究   总被引:5,自引:1,他引:4  
以稻壳为原料、KOH为活化剂,制备了高比表面积活性炭,研究了活化剂用量、活化温度和活化时间对活性炭吸附性能的影响.研究结果表明,活化剂与稻壳的质量比为3:1,在800℃活化1h,制得的活性炭碘吸附值为1520.32mg/g,亚甲蓝吸附值为3442.50mg/g,比表面积为2027.42m2/g.SEM和XRD观察发现,干馏过程及活化过程的共同作用使活性炭产生多孔结构.  相似文献   

9.
以陇东地区生物质废弃物杏壳为原料,采用微波热裂解-KOH活化联合法制备活性炭,研究了微波功率和时间,活化过程中KOH溶液的浓度、用量、浸渍时间、加热活化温度和时间对活性炭吸附性能的影响;以甲基橙为染料模拟印染废水,研究了甲基橙初始浓度、振荡吸附时间和活性炭用量对吸附效果的影响。结果表明:微波功率800W,热裂解30min,生物炭的收率为56%;KOH溶液的浓度为25%,碱/炭为2.5∶1,活化温度800℃,加热活化1.5h,所制备活性炭的碘吸附值为1332mg/g,比表面积为1223m2/g,总孔体积为0.68cm3/g,活性炭的得率为32.7%;甲基橙浓度为250mg/g,振荡吸附240min,活性炭用量为每100mL甲基橙溶液0.15g时,甲基橙去除率高达99.78%;吸附过程符合准二级动力学方程。  相似文献   

10.
以KNO_3为氧化剂,经5%~15%(质量分数)KOH常温浸渍,在N_2-水蒸气混合气氛下进行控制热分解制备均匀超微孔活性炭。试验选用正交试验法,选择活化温度、活化时间、KOH浸渍浓度、浸渍时间等参数为影响因素,以碘吸附值为考察指标,得到最佳水平组合,活化温度900℃,活化时间1h,KOH浓度15%,浸渍时间24h。对活性炭表征结果如下:最佳样品碘吸附值达840 mg/g。BET比表面积为725cm~2/g,中值孔径为0.489nm,其中微孔容积占总孔容的70.8%,氢气最大吸附量达76.85cm3/g。该样品以超微孔为主,超微孔孔径主要分布在0.45~0.52nm之间,孔分布比较集中,可用于混合气体分离。  相似文献   

11.
以废弃核桃壳作为原料,采用微波加热法制备生物质基多孔活性炭。基于响应面法和数值模拟方法研究活性炭前驱体进行物理活化过程中微波功率、活化时间以及磷酸质量分数对生物质基多孔活性炭吸附性能的影响,对生物质基多孔活性炭制备方案进行优化,并对最优条件下制备的生物质基多孔活性炭进行表征。结果表明,3个因素均对生物质基多孔活性炭的吸附性能有影响,其影响显著性为:微波功率磷酸质量分数活化时间。优化的制备条件为:微波加热法对活性炭前驱体进行物理活化过程中的微波功率为746W、活化时间为11.2min以及磷酸质量分数为85.9%。优化生物质基多孔活性炭的碘吸附值为1074.57mg/g,亚甲基蓝吸附值为294.4mL/g,获得率为52.1%。  相似文献   

12.
研究了以无烟煤为原料,通过预炭化、再采用KOH活化法制备煤基活性炭的工艺。利用场发射扫描电子显微镜(SEM)研究了活性炭的显微结构,并测试了活性炭对甲基橙(MO)的吸附性能。结果表明:无烟煤炭化产物与KOH质量比(炭碱比)、活化温度、活化时间对煤基活性炭显微结构及吸附性能有显著影响。在炭碱比为1∶1、活化温度为900℃、活化时间1h的条件下,能制备出吸附性能良好的活性炭材料,吸附15min时对MO的吸附率可达到89.6%。  相似文献   

13.
以重质沥青为原料,采用化学活化法制备重质沥青基活性炭,探究空气预氧化与硝酸钾预氧化、不同碱炭比及不同活化时间和活化温度对重质沥青基活性炭性能的影响,并采用碘吸附值与二氧化硫吸附量来确定活性炭的吸附性能。结果表明:在硝酸钾预氧化及碱炭比为4∶1的条件下,活化时间80min、活化温度850℃时制备的重质沥青基活性炭具有较为发达的微孔结构,碘吸附值为1052.2mg/g,二氧化硫吸附量为319.1mg/g。其性能优于物理活化法制备的活性炭,有望应用于吸附脱硫环保领域。  相似文献   

14.
以新疆克拉玛依石油焦为原料,KOH为活化剂,在N2保护下,采用化学活化法制备高比表面积活性炭。系统考察了碱焦比、活化温度、活化时间以及N2流速对所制备活性炭的碘吸附值及产率的影响。结果表明:当碱焦比为4∶1、活化温度为800℃、活化时间为0.5h及N2流速为50mL/min时,制备出的活性炭BET比表面积高达2806.69m2/g,碘吸附值为2941mg/g,活化产率为62.1%。采用N2吸附-脱附及X射线衍射等实验手段对活性炭进行了表征。  相似文献   

15.
赵朔  裴勇 《材料导报》2012,26(4):87-90
以笋壳为原料,采用氯化锌活化法制备活性炭,通过正交试验研究了氯化锌与笋壳质量比、氯化锌溶液浓度、活化温度、活化时间等因素对笋壳基活性炭的活化收率、碘吸附值和亚甲基蓝吸附值的影响。研究表明,活化温度对活性炭性能的影响最显著;氯化锌活化法制备笋壳基活性炭的最佳条件为:m(氯化锌)/m(笋壳)=2:1,氯化锌溶液浓度为5%,活化温度为600℃,活化时间为90min。采用氮气吸附-脱附法对最佳条件下制备的活性炭进行表征,结果表明,该条件下制备的活性炭为中孔型活性炭。  相似文献   

16.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

17.
刘皓  邓保炜  陈娟  白晓惠  张楠 《材料导报》2016,30(10):87-90
以兰炭粉为原料,水蒸汽为活化剂,采用物理活化法制备中孔活性炭。分别讨论了活化温度、活化时间、水蒸汽质量流量对活性炭碘吸附值的影响,并采用正交实验对工艺条件进行了优化。利用全自动物理吸附仪对活性炭的比表面积和孔结构进行表征。结果表明:随着活化温度的升高、活化时间的延长和水蒸汽流量的增大,活性炭的碘吸附值均呈现先升高后下降的变化规律。正交实验结果表明,水蒸汽活化兰炭粉的适宜条件为:活化温度900℃,活化时间60min,水蒸汽流量1.25g/min。此条件下制得的活性炭具有多级孔的特征,而且以中孔为主,其碘吸附值为924.45mg/g,比表面积为818.52m2/g。  相似文献   

18.
以河南永城无烟煤为原料、KOH为活化剂制备了高比表面积的煤基活性炭,采用低温N_2吸附法对活性炭的比表面积、孔容及孔径分布进行了表征,并对其用作双电层电容器电极材料的电化学性能进行了系统测试.在KOH与煤的质量比为4:1、活化温度为800℃、活化时间为1h的条件下制备出的活性炭其比表面积高达3224m~2/g,总孔容达1.76cm~3/g,中孔率为57.95%.该活性炭电极在3mol/L KOH电解液中的比电容高达324F/g,且具有良好的循环性能,当电流密度为40mA/g时,经1000次循环后,比电容保持率超过92%,且其漏电流很小.  相似文献   

19.
以花生壳为原料,氢氧化钾为活化剂,采用微波加热制备出活性炭,所制活性炭用于制备电化学电容器用电极材料。通过氮气吸附、恒流充放电及循环伏安对所制活性炭的孔结构及电化学性能进行研究。结果表明,活性炭的比表面积、总孔容、比电容以及能量密度在炭化时间(6-10 min)以及KOH与花生壳的质量比(0.6-2.0)的范围内存在最大值。当KOH/花生壳的质量比为1.0,微波功率为600 W,活化时间8 min,所制活性炭(AC1-600-8)比表面积达1277 m2/g,并且经1 000次循环后,其能量密度高达8.38 Wh/kg。因此采用微波加热、KOH活化是一种快速制备电化学电容器用活性炭的低成本方法。  相似文献   

20.
以农业废料中的油菜秸秆为原料,利用化学活化的方法制备活性炭。利用活性炭对甲基橙的吸附探讨了料液比、活化剂磷酸浓度、活化时间、活化温度、浸泡时间对活性炭吸附能力的影响,得出了活性炭制备的最佳工艺条件,最佳的工艺条件为料液比1∶3,活化剂浓度60%,活化时间4h,活化温度400℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号