首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The morphology of impact craters on the icy Galilean satellites differs from craters on rocky bodies. The differences are thought due to the relative weakness of ice and the possible presence of sub-surface water layers. Digital elevation models constructed from Galileo images were used to measure a range of dimensions of craters on the dark and bright terrains of Ganymede. Measurements were made from multiple profiles across each crater, so that natural variation in crater dimensions could be assessed and averaged scaling trends constructed. The additional depth, slope and volume information reported in this work has enabled study of central peak formation and development, and allowed a quantitative assessment of the various theories for central pit formation. We note a possible difference in the size-morphology progression between small craters on icy and silicate bodies, where central peaks occur in small craters before there is any slumping of the crater rim, which is the opposite to the observed sequence on the Moon. Conversely, our crater dimension analyses suggest that the size-morphology progression of large lunar craters from central peak to peak-ring is mirrored on Ganymede, but that the peak-ring is subsequently modified to a central pit morphology. Pit formation may occur via the collapse of surface material into a void left by the gradual release of impact-induced volatiles or the drainage of impact melt into sub-crater fractures.  相似文献   

2.
The presence of craters with central peaks on the ice satellites of Saturn implies that their surface elastic strength is comparable to that of the Moon, Mars, and Mercury which have central peak craters, rather than that of the Jovian ice satellites Ganymede and Callisto which do not have central peak craters.  相似文献   

3.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

4.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

5.
The high-resolution Voyager images of Ganymede show a class of fresh craters 6–89 km in diameter which is distinguished by an ejecta blanket similar to those seen for some types of Martian craters. One hundred and eighty-five were identified and studied for trends with respect to latitude, longitude, and terrain type. No correlation of the ratio of ejecta diameter to crater diameter was found as a function of latitude or longitude, and there is only a suggestion of a trend in this ratio with respect to major terrain types. Central peak frequency is greatest for the smaller crater diameters. Central pit occurrence dominates central peak occurrence at crater diameters ?35 km. We conclude that the ejecta morphology probably results from impact into an icy target. The question of whether atmospheric ejecta-particle drag contributes to ejecta blanket morphologies on planets with an atmospheric cannot be resolved entirely from the Voyager images. The image resolution is insufficient to show diagnostic flow features on the ejecta, if they exist, or to detect evidence of any other ejecta deposits which would lie beyond the pedestal, predicted by some researchers to exist only on bodies with an atmosphere.  相似文献   

6.
Using high-resolution Galileo images, we counted the number of craters (larger than 1 km) on two of Jupiter's satellites—Callisto (outside and inside the Asgard impact basin) and Ganymede (in the dark cratered Galileo region)—and classified these craters morphologically. Based on the degree of preservation of crater rims, three morphological classes, A, B, and C (from the most preserved to the most degraded), have been identified. The A : B : C ratios, equal, respectively, to 1 : 3 : 5, 1 : 3 : 7, and 1 : 2.5 : 6.5 for fragments of the territory outside and inside the Asgard basin and within Galileo Regio, indicate that these crater populations reached a considerably high degree of maturity. The degradation of kilometer-scale craters on Callisto proceeds by the narrowing of their rims and their disintegration into chains of knobs, probably due to the sublimation of ice that composes the rim material. Comparing the density of craters of different classes in the regions inside and outside Asgard shows that class A craters on the territories examined were formed after the event that formed this impact basin. Kilometer-scale craters on Ganymede degrade through the expansion and smoothing of their rims and the dissection of them by radial furrows. This implies the involvement in the crater destruction of a downslope movement triggered by the seismic activity that accompanied the formation of tectonic grooves. It is possible that ice sublimation also took part in the destruction of craters on Ganymede, but its effect was less prominent than the effect of downslope movements.  相似文献   

7.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

8.
The ejecta blankets of impact craters in volatile‐rich environments often possess characteristic layered ejecta morphologies. The so‐called double‐layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high‐resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well‐preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock‐induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile‐rich environments, such as Ganymede, Europa, and the Earth.  相似文献   

9.
We use hydrocode modeling to investigate dynamic models for the collapse of the Chicxulub impact crater. Our aim is to integrate the results from numerical simulations with kinematic models derived from seismic reflection and wide-angle velocity data to further our understanding of the formation of large impact craters. In our simulations, we model the collapse of a 100-km diameter, bowl-shaped cavity formed in comprehensively fractured crustal material. To facilitate wholesale collapse, we require that the strength of the target be significantly weakened. In the present model, we achieve this using acoustic fluidization, where strong vibrations produced by the expanding shock wave cause extreme pressure fluctuations in the target. At times and positions where the overburden pressure is sufficiently counteracted, the frictional resistance is reduced, enabling the rock debris to flow. Our simulations produce a collapsed crater that contains most of the features that we observe in the seismic data at Chicxulub. In particular, we observe a topographic peak ring, formed as material that is originally part of the central uplift collapses outward and is thrust over the inwardly collapsing transient crater rim. This model for peak-ring generation has not been previously demonstrated by numerical simulations and predicts that the peak ring is composed of deeply derived material and that the stratigraphy within the peak ring is overturned.  相似文献   

10.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

11.
We report on the first results of a large‐scale comparison study of central pit craters throughout the solar system, focused on Mars, Mercury, Ganymede, Rhea, Dione, and Tethys. We have identified 10 more central pit craters on Rhea, Dione, and Tethys than have previously been reported. We see a general trend that the median ratio of the pit to crater diameter (Dp/Dc) decreases with increasing gravity and decreasing volatile content of the crust. Floor pits are more common on volatile‐rich bodies while summit pits become more common as crustal volatile content decreases. Uplifted bedrock from below the crater floor occurs in the central peak upon which summit pits are found and in rims around floor pits, which may or may not break the surface. Peaks on which summit pits are found on Mars and Mercury share similar characteristics to those of nonpitted central peaks, indicating that some normal central peaks undergo an additional process to create summit pits. Martian floor pits do not appear to be the result of a central peak collapse as the median ratio of the peak to crater diameter (Dpk/Dc) is about twice as high for central peaks/summit pits than Dp/Dc values for floor pits. Median Dpk/Dc is twice as high for Mars as for Mercury, reflecting differing crustal strength between the two bodies. Results indicate that a complicated interplay of crustal volatiles, target strength, surface gravity, and impactor energy along with both uplift and collapse are involved in central pit formation. Multiple formation models may be required to explain the range of central pits seen throughout the solar system.  相似文献   

12.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   

13.
Depending on their sizes, impact craters have either simple or complex geometries. Peak‐ring craters such as the Chicxulub impact structure possess a single interior ring of peaks and hills and a flat interior floor. The exact mechanisms leading to the formation of a morphological peak‐ring are still a matter of debate. In this study, analog modeling was used to study the flow field of a collapsing central uplift. A 3‐D‐printed cast was used to bring the analog material in the shape of an overheightened central uplift that was based on numerical modeling. The cast was then quickly removed and the central peak collapsed, forming a flattened broad mound that spread out onto the annular moat of the crater cavity. A subwoofer was used to fluidize the granular target material. The kinematics of the collapse were analyzed with the aid of particle image velocimetry, revealing a downward and outward collapse of the central uplift. This mode of collapse is partly in agreement with numerical models, in particular for the initial and middle phases. The overthrusting of the collapsing central peak onto the inward moving crater floor predicted by numerical modeling was observed, though to a lesser degree. A peak‐ring, however, could not be reproduced since the collapse came to a halt before the central peak was completely leveled. Nevertheless, the method provides qualitative insights into the kinematics of collapse phenomena. This experimental study provides independent support of the theory of acoustic fluidization, in addition to numerical simulations.  相似文献   

14.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   

15.
Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. We propose that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters.The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance.We propose that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.  相似文献   

16.
The presence of central peak craters and the absence of central pit craters on Triton implies a surface rigidity similar to the Saturnian and Uranian satellites and stronger than that of the Jupiter satellites Ganymede and Callisto. Tectonically degraded terrain may exist at the antipode of the large impact structure on 1989N1. Dome craters on Triton may represent a form of solid state volcanism.  相似文献   

17.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

18.
We experimentally studied the formation and collapse processes of transient craters. Polycarbonate projectiles with mass of 0.49 g were impacted into the soda-lime glass sphere target (mean diameters of glass spheres are ∼36, 72, and 220 μm, respectively) using a single-stage light-gas gun. Impact velocity ranged from 11 to 329 m s−1. We found that the transient crater collapses even at laboratory scales. The shape (diameter and depth) of the transient crater differs from that of the final crater. The depth-rim diameter ratios of the final and transient craters are 0.11-0.14 and 0.26-0.27, respectively. The rim diameter of both the transient and final crater depends on target material properties; however, the ratio of final to transient crater diameter does not. This suggests that target material properties affect the formation process of transient craters even in the gravity regime, and must be taken into account when scaling experimental results to planetary scales. By observing impacts into glass sphere targets, we show that although the early stage of the excavation flow does not depend on the target material properties, the radial expansion of the cavity after the end of vertical expansion does. This suggests that the effect of target material properties is specifically important in the later part of the crater excavation and collapse.  相似文献   

19.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

20.
Charles A. Wood 《Icarus》1973,20(4):503-506
The heights of central peaks in lunar craters are directly proportional to crater diameters, implying that peak height is a function of crater-forming energy. A similar relationship exists for terrestrial meteorite and TNT craters whose uplifts are of rebound origin. A rebound origin for lunar central peaks implies an impact origin for central peak craters. Correlation of peak heights and crater depths provides direct evidence for lava filling of crater floors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号