首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— As the Xe content of PDPs is increased, the space‐charge priming becomes more effective. Also, the diffusion/drift of the space charges and accumulation of the wall charges becomes faster. These facts indicate that the use of an erase addressing is preferable for high‐Xe‐content PDPs. A 30%‐Xe green test panel was driven with contiguous subfields using erase addressing and a grouped Address‐While‐Display scheme. Crosstalk was suppressed by driving the odd and even sustain electrodes separately. The fast addressing speed of 0.283 μsec allowed for 121 subfields and 122 gray levels, with a resultant luminance of 4200 cd/m2 and a dark‐room contrast of 310:1. The scan and data pulse voltages were as low as 90 and 75 V, respectively. All the subfields had an identical length of 136 μsec, but the number of sustain pulses in these subfields could be varied between 2 and 20. By selecting an adequate number of sustain pulses in the subfields, arbitrary gamma characteristics could be realized. A gray‐scale expression having a constant difference between the consecutive “perceived” luminance levels was verified throughout all the luminance levels.  相似文献   

2.
Abstract— Power savings, image‐quality improvement, and cost reduction are the major issues facing PDP development. High‐Xe‐content PDPs have attained improved luminous efficiency, but with sacrifices in higher switching and sustain voltages and slower discharge build‐up. By examining PDPs having 3.5%–30% Xe content, it was found that utilization of the space‐charge priming effect as well as wall‐charge accumulation are effective in obtaining a low operating voltage and a high switching speed. The improvements are enhanced for higher Xe pressures. By using space‐charge priming, the statistical time lag of the discharge triggering for the 30% Xe content is reduced significantly and becomes approximately equal to that of 3.5% Xe content. Once triggered, the formative time lag of the discharge becomes shorter and the space charge experiences diffusion/drift; hence, accumulation of the wall charge is faster for discharges with higher Xe contents. These indicate that the use of an erase addressing scheme, rather than a write addressing scheme, is preferable when driving high Xe‐content PDPs, because the erase addressing scheme provides the addressing operation with an abundant amount of priming particles. Also, the drive voltages are lower for the erase addressing scheme. In order to reduce the address voltage, it is effective to accumulate wall charges prior to addressing. It was found that there are limiting values for the charge accumulation, above which self‐erase discharges ignite and the wall charge is dissipated. The self‐erase discharge occurs at relatively low wall voltages when the Xe percentages becomes higher. The sustain pulse voltage can be reduced while keeping the luminous efficiency high by increasing the sustain pulse frequency. As the frequency is increased, a residual amount of space charge created by the preceding sustain pulse increases. Due to the priming effect of these space charge, the build‐up of the discharge current becomes faster, resulting in a lower voltage.  相似文献   

3.
Abstract— In order to realize low‐voltage addressing of PDPs, an erase‐addressing scheme was adopted together with an accumulation of an appropriate amount of wall charge by using priming and bias pulses prior to addressing. The switching operation is performed by using sharp threshold characteristics of the self‐erase discharge. Cessation of the scan pulse ignites a weak self‐erase discharge, which, together with the data pulse, triggers an intense self‐erase discharge. By using the drive scheme, the data‐ and scan‐pulse voltages can be reduced to 1.1 and 29.6 V, respectively, provided that the panel has perfectly uniform voltage characteristics.  相似文献   

4.
Abstract— High‐Xe‐content PDPs attain improved luminous efficiency, but with sacrifices of higher sustain and address voltages and slower discharge build‐up. By examining PDPs with 3.5–100% Xe contents, it was revealed that space‐charge priming as well as wall‐charge accumulation are effective in obtaining low‐voltage and high‐speed operation. In addition, it was found that the effectiveness is emphasized for higher‐Xe‐pressure PDPs. In this respect, erase addressing is more favorable than write addressing, especially for high‐Xe‐pressure PDPs. The formative time lag of the discharge and diffusion/drift of the space charges are shorter for high Xe contents. In this respect, high‐Xe‐content PDPs have a potential for high‐speed addressing, if driven adequately. The use of space‐charge priming, however, is limited by the duration between the priming and scan pulses. Accumulation of wall charges is limited by ignition of a self‐erase discharge with which all the wall charges are dissipated. Although the highest efficiency and luminance are attained with a 100%‐Xe panel, the optimum Xe gas content, considering the sustain pulse voltage and drive voltage margin, would be 70% Xe + Ne.  相似文献   

5.
Although the priming effect shortens address period and reduces address voltage, it is difficult to use the priming effect for the conventional write addressing method because the ramp reset pulses provide little priming effect. An extremely weak discharge for priming has been incorporated with write addressing method. The extremely weak discharge is generated by priming pulse applied just prior to the scan pulse. In the 4‐in‐diagonal test panel containing Ne + 10%Xe mixture gas, infrared emission intensity of the discharge is 900 times smaller than that of sustain discharge. Therefore, there is no degradation of dark room contrast ratio. Because the priming discharge generates a very small amount of charges, there is little reduction in the amount of wall charge accumulated during reset period. Namely, increase in address voltage can be avoided. Although the discharge intensity is extremely low, it provides sufficient priming particles for high‐speed and low‐voltage addressing. When priming pulse voltage is 70 V and width is 10 µs, the address discharge delay is reduced to less than half. When the scan voltage margin is 10 V, the data voltage is reduced to 17 V, which is 20 V lower than that of conventional method.  相似文献   

6.
Abstract— A thick‐film ceramic‐sheet PDP provides a long sustain discharge gap of 0.45 mm, enabling the use of positive column discharges. The discharges are established in the middle of the discharge space and are completely free from touching the surface of substrates. This allows for the reduction in diffusion losses of the charged particles. To further improve the efficacy, delayed D pulses are applied to the address electrodes during the sustain period. Although the pulses only draw a little current, they perturb the electric field, reducing the peak discharge current and hence resulting in higher efficacy and luminance. The efficacy and luminance increase by 35% and 38%, respectively, with the delayed D pulses. These pulses are incorporated into the contiguous‐subfield erase‐addressing drive scheme for TV application. A short gap of 70 μm between the sustain and data electrodes generates a fast‐rising discharge and allows a high‐speed addressing of 0.25 μsec. This provides 18 contiguous subfields for the full‐HD single‐scan mode, with 70% light emission duty. A luminous efficacy of 6.0 lm/W can been attained using Ne + 30% Xe 47 kPa, a sustain voltage of 320 V, and a sustain frequency of 3.3 kHz, when the luminance is 157 cd/m2. Alternatively, the panel can achieve 4.2 lm/W and 1260 cd/m2 by increasing the sustain frequency to 33 kHz.  相似文献   

7.
Abstract— A new type of ACPDP with a shadow mask (shadow‐mask PDP, SMPDP) has been developed, featuring an effective structure and lower cost. The distinct difference between an SMPDP and a conventional ACPDP is that the dielectric barrier ribs are replaced by a single metal shadow mask. A three‐dimensional self‐consistent fluid model was used to analyze the effects of the shadow‐mask voltage on the discharge for a simplified driving scheme. The simulation results indicate that by selecting the appropriate shadow‐mask voltage, the addressing speed can be improved due to the local strong electric field. The steady discharge in the sustaining period will not be affected by changes in the shadow‐mask voltages in the addressing period. While in the sustaining period, the shadow‐mask‐voltage variation can directly affect the sustaining discharge. The floating shadow mask in the sustaining period is beneficial in achieving a stable sustaining discharge.  相似文献   

8.
Abstract— It has been well known that the luminous efficiency of PDPs can be improved by increasing the Xe content in the panel. For instance, the efficiency is improved by a factor 1.7 when the Xe content is increased from 3.5% to 30%. The sustain pulse voltage, however, increases from 180 to 230 V by a factor 1.3. It was found that the increase in the sustain pulse voltage can be suppressed by increasing the sustain pulse frequency. The high‐frequency operation further increases the luminous efficiency. If the Xe content is increased from 3.5% to 30% and the drive pulse frequency is increased from 147 to 313 kHz, the luminous efficiency becomes 2.7 times higher and the luminance 4.5 times higher. Furthermore, the increase in the sustain pulse voltage is suppressed 1.1 times, from 180 to 200 V. A mechanism of attaining high efficiency and low‐voltage performance can be considered as follows. A train of pulses is applied during a sustain period. As the sustain pulse frequency is increased, the pulse repetition rate becomes faster and a percentage of the space charge created by the previous pulse remains until the following pulse is applied. Due to the priming effect of these space charge, the discharge current build‐up becomes faster, the width of the discharge current becomes narrower, ion‐heating loss is reduced, and the effective electron temperature is optimized so that Xe atoms are excited more efficiently. The intensity of Xe 147‐nm radiation, dominant in low‐pressure Xe dis‐charges, saturates with respect to electron density due to plasma saturation. This determines the high end of the sustain pulse frequency.  相似文献   

9.
Abstract— It is shown that space charges dominate the build‐up of an address discharge when it is preceded by a priming discharge in less than 32 μsec. When the separation of these discharges (cease period) exceeds 32 μsec, the space charges diffuse away and the metastable particles start playing the role of priming. The priming effect of the metastable particles is not too strong, which is desirable for adopting a data‐pulse‐voltage reduction technique for PDPs. By choosing the length of the cease period to be between 32 and 80 μsec in the Address‐While‐Display drive scheme, the data pulse voltage was reduced to 20 V. This leads to a considerable cost reduction of data driver ICs.  相似文献   

10.
Abstract— High‐efficiency plasma‐display‐panel micro‐discharge characteristics will be discussed. An increase in the discharge efficiency for a higher‐Xe‐content gas mixture is well known. In this article, the interdependency of the capacitive design, the sustain voltage, and the Xe content will be discussed. A high panel efficacy was obtained, especially for the design and driving conditions that govern the development of a fast discharge. A fast discharge was observed for a higher discharge field at sustain voltages higher than 200 V. A +C‐buffer design, where the extra capacitance acts as a local on the panel power source that lowers the voltage decrease inherent to the discharge of the discharge capacitance upon firing, and efficient priming of the discharge at higher sustain frequency, also stimulates a fast‐discharge development. Apparently, a “high‐efficiency fast‐discharge mode” exists. It is proposed that in this mode the cathode sheath is not, or incompletely, formed during the increase in the discharge current, and the electric field in the discharge cell is dominated not by the space charges but by the externally applied voltage. The effective discharge field is lowered, resulting in a lower effective electron temperature and more efficient Xe excitation. Also, under a fast discharge build‐up condition, the electron‐heating efficiency increases, due to a decrease in the ion heating losses in the cathode sheath. In a 4‐in. color plasma‐display test panel, operating in a high‐efficiency discharge mode and containing a 50%Xe in Ne gas mixture, a panel efficacy of 5 lm/W concurrent with a luminance of 5000 cd/m2 was realized. This result was obtained at a sustain voltage of 260 V. These data compare favorably with alternative high‐efficacy panel design approaches.  相似文献   

11.
Abstract— Driving waveforms having both high‐speed address and low background were developed using Vt closed curve analysis. To prevent a misfired discharge during a sustain period, the voltage difference at the end of the ramp setup between the X‐Y electrodes remains constant. Because background luminance becomes higher (although the address discharge time lag becomes shorter) as the voltage difference between the A‐Y electrodes becomes larger, a low reset voltage and an address bias voltage were adopted during the ramp‐up period.  相似文献   

12.
To improve PDP performance, we developed an AC‐PDP with the Delta Tri‐Color Arrangement (DelTA) cell structure and arc‐shaped electrodes. The experimental panel has a pixel pitch of 1.08 mm and luminous efficacy of 3 lm/W at a luminance of 200 cd/m2 despite its conventional gas mixture of Ne and Xe (4%) and conventional phosphor set. Moreover, its peak luminance can be greater than 1000 cd/m2. The strong dependence of luminous efficacy on the sustain voltage is also discussed in this paper.  相似文献   

13.
《Displays》2007,28(2):74-80
This paper presents a waveform for driving a high-resolution plasma display panel (PDP) which uses a gas mixture of high Xe content. To prevent degradation of picture quality due to unstable discharges between two facing electrodes, the common electrode was biased at a negative voltage during the set-up period, and the data electrode was biased at a positive voltage during the sustain period. A pre-reset pulse was used before the first reset to reduce the reset voltage and to form a proper wall charge state for sustain discharges. This waveform could drive a 15% Xe 42 in. XGA (1024 × 768) PDP with the single-scan method. The measured black luminescence, peak luminescence, and contrast ratio were 0.45, 1490 cd/m2, and 3310:1, respectively. The measured margin of the sustain voltage was better than ±10 V.  相似文献   

14.
The performance of two 4‐in. color PDP test panels with a default and a high‐Xe‐concentration gas mixture will be discussed. The default panel with a gas mixture of 3.5% Xe in Ne and a filling pressure of 665 hPa was compared with a panel containing a gas mixture of 13.5% Xe in Ne and a filling pressure of 800 hPa. The panels contain a green phosphor, YBO3:Tb, which showed less saturation at high UV load compared with a Willemite phosphor. The panel performance was compared in addressed conditions. For the default panel, a white luminance of 710 cd/m2 and an efficacy of 1.6 lm/W was found, while for the high‐Xe‐partial‐pressure panel, a white luminance of 2010 cd/m2 and an efficacy of 3.8 lm/W was realized. The increase of the driving voltages, about 20–30 V, is moderate. Finally, color saturation is improved at high Xe partial pressure.  相似文献   

15.
Abstract— The temperature dependence of the hysteresis of an a‐Si:H TFT has been investigated. An a‐Si:H TFT pixel driving scheme has been proposed and investigated. This scheme can eliminate changes in the organic light‐emitting diode (OLED) current caused by hysteresis of an a‐Si:H TFT. The VTH of the a‐Si:H TFT was changed according to the gate‐voltage sweep direction because of the hysteresis of the a‐Si:H TFT. The variation of VTH for a a‐Si:H TFT decreased from 0.41 to 0.17 V at an elevated temperature of 60°C because the sub‐threshold slope (s‐slope) of the a‐Si:H TFT, in the reverse voltage sweep direction, increased more than in the forward voltage sweep direction due to a greater increase in the initial electron trapped charges than the hole charges. Although the OLED current variation caused by hysteresis decreased (~14%) as the temperature increased, the error in the OLED current needed to be improved in order to drive the pixel circuit of AMOLED displays. The proposed pixel circuit can apply the reset voltage (?10 V) before the data voltage for the present frame that was written to fix the sweep direction of the data voltage. The variation in the OLED current caused by hysteresis of the a‐Si:H TFT was eliminated by the fixed voltage sweep direction in the proposed pixel circuit regardless of operating temperature.  相似文献   

16.
This paper proposes a method of reducing the data voltage Vd of plasma display panels (PDPs). The proposed biased-scan method uses two separate ground systems: one for the sustain pulse generator (FGND) and the other for the data address and control systems (CHGND). A dc voltage bias, which is applied between CHGND and FGND during the address period, reduces Vd while preventing the undesired glow discharge induced by a scan pulse only. CHGND is connected to FGND for the first sustain pulse of each subfield, which reduces the time lag of address discharge, but it is separated from FGND for the other sustain pulses to increase the margin of the sustain voltage. The proposed method was tested on a 15% Xe 50-in. Full HD (1920 × 1080) single-scan PDP which had a sustain discharge gap of 110 μm. Vd could be reduced by 20 V (30%), and the power consumption of the Vd voltage source decreased by ∼25 W (50%) from that of the conventional method.  相似文献   

17.
Novel liquid‐crystal (LC) mixtures featuring high optical anisotropy Δn) and small rotational viscosity (γ1) were developed for field‐sequential‐color TN‐LCD applications. The dynamic behavior of the TN cells in a narrow‐gap range was studied and new tolane LC substances were introduced. The newly developed LC mixtures, having a narrow‐gap cell, enable a TN‐LCD to switch fast enough to be applied to field‐sequential‐color displays not only at a room temperature but also at low temperatures. It was also confirmed that the voltage‐holding ratio (VHR) is sufficiently high in field‐sequential addressing conditions and, therefore, the LC mixtures can be used in active‐matrix LCDs. For practical use, a storage test of the TN cells under light irradiation was performed to evaluate their voltage‐holding property. It was also confirmed that their high VHR can be maintained for over 10,000 hours under practical conditions.  相似文献   

18.
Abstract— To investigate the influence of the gas condition, especially xenon (Xe) gas, on the wall‐voltage variation in relation to the electric‐field intensity during the address period, the wall voltages were measured under various Xe‐gas content ranging from 11 to 20% by using the Vt closed curve analysis method. It was observed that under a weak electric‐field intensity between the scan and address electrodes, the change in Xe content did not affect the wall‐voltage variation, even at a higher panel temperature of 65δC. However, under a strong electric‐field intensity, the wall‐voltage variations were reduced with an increase in the Xe content, confirming that a higher electric‐field intensity would be required to induce the wall‐voltage variation at a higher Xe content during the address period.  相似文献   

19.
A hybrid AWD/AND drive technique has been developed in which an Address‐While‐Display (AWD) scheme is combined with an AND logic characteristic that gas discharges demonstrate. The AWD technique enables AC‐PDPs to be driven at high luminance, while the AND logic reduces the number of scan drivers by an order of magnitude. A detailed analysis of the addressing operation has been made. The hybrid drive utilizes the AND logic in two ways: (1) a combination of two voltage pulses and (2) a combination of a voltage pulse and discharge‐priming particles. It was found that the addressing operation requires the establishment of a discharge between the scan and data electrodes, and also between the scan and display electrodes.  相似文献   

20.
《Displays》2007,28(2):68-73
This paper presents a method of surface treatment of phosphor using a single crystalline MgO powder, and investigates effect of the surface treatment on discharge property of a plasma display panel (PDP). The discharge gas of the PDP was a 88% Ne–12% Xe gas mixture at a pressure of 400 Torr. For the surface treatment, a single crystalline MgO powder was mixed in methanol, sprayed on the phosphor surface, and annealed at 400 °C. This treatment suppressed glow discharge, which was observed very often in the weak discharges for reset of PDP if the phosphor works as a cathode, and provided a favorable condition for the PDP reset operation. When an experimental PDP fabricated using the surface treatment was driven by the twin reset waveform, the measured time delay for 99.9% cumulative probability of address discharge was 830 ns, which meets the timing requirement for addressing a Full HD (1920 × 1080 resolution) PDP with the 10 sub-field single scan method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号