首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper reports on the cationic electron‐beam curing of a high‐functionality SU8 epoxy resin, which is extensively used as a UV‐curing negative photoresist for micro‐electronics machine systems (MEMS) applications. Results show that elevated post‐curing treatment significantly increased both the conversion and the glass transition. The degree of conversion and the glass transition temperature were measured by using Fourier‐transform infrared (FTIR) spectroscopy and modulated differential scanning calorimetry (MDSC®), respectively. The glass transition temperature (Tg), which has been observed to be dependent on the degree of conversion, reaches a maximum of 162 °C at 50 Mrad and post‐curing at 90 °C. The degradation pattern of the cured resin does not show much variation for exposure at 5 Mrad, but does show significant variation for 50 Mrad exposure at various post‐curing temperatures. A degree of conversion of more than 0.8 was achieved at a dosage of 30 Mrad with post curing at 80 °C, for the epoxy resin with an average functionality of 8 a feature simply not achievable when using UV‐curing. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Melting gels are hybrid gels that have the ability to soften and flow at around 100°C for some combinations of mono‐ and di‐substituted alkoxysiloxanes, where substitutions are either all aromatic or all aliphatic. In this study, melting gels were prepared using phenyltriethoxysilane (PhTES) and dimethyldiethoxysilane (DMDES), meaning both an aromatic and aliphatic substitution. Differential scanning calorimetry was performed to identify glass‐transition temperatures, and thermal gravimetric analysis coupled with differential thermal analysis (TGA‐DTA) was performed to measure weight loss. The glass‐transition temperatures (Tg) ranged from ?61°C to +5.6°C, which are between the values in the methyl only system, where all Tg values are less than 0°C, and those values in the phenyl only system, where Tg values are greater than 0°C. The Tg decreased with an increase in the DMDES fraction. Below 450°C, the gels lost little weight, but around 600°C there was a drop in weight. This temperature is lower than the temperature for gels prepared with only aromatic substitutions, but higher than that for gels prepared with only aliphatic substitutions. Final heat treatment was carried out at 150°C for the gel with 80%PhTES‐20%DMDES (in mol%), and the consolidation temperature increased with increasing DMDES content to 205°C for the gel with 50%PhTES‐50%DMDES. After this heat treatment, the melting gels no longer soften.  相似文献   

3.
The cationic copolymerization of regular soybean oil, low‐saturation soybean oil (LoSatSoy oil), or conjugated LoSatSoy oil with styrene and divinylbenzene initiated by boron trifluoride diethyl etherate (BF3·OEt2) or related modified initiators provides viable polymers ranging from soft rubbers to hard, tough, or brittle plastics. The gelation time of the reaction varies from 1 × 102 to 2 × 105 s at room temperature. The yields of bulk polymers are essentially quantitative. The amount of crosslinked polymer remaining after Soxhlet extraction ranges from 80 to 92%, depending on the stoichiometry and the type of oil used. Proton nuclear magnetic resonance spectroscopy and Soxhlet extraction data indicate that the structure of the resulting bulk polymer is a crosslinked polymer network interpenetrated with some linear or less‐crosslinked triglyceride oil–styrene–divinylbenzene copolymers, a small amount of low molecular weight free oil, and minor amounts of initiator fragments. The bulk polymers possess glass‐transition temperatures ranging from approximately 0 to 105°C, which are comparable to those of commercially available rubbery materials and conventional plastics. Thermogravimetric analysis (TGA) indicates that these copolymers are thermally stable under 200°C, with temperatures at 10% weight loss in air (T10) ranging from 312 to 434°C, and temperatures at 50% weight loss in air (T50) ranging from 445 to 480°C. Of the various polymeric materials, the conjugated LoSatSoy oil polymers have the highest glass‐transition temperatures (Tg) and thermal stabilities (T10). The preceding properties that suggest that these soybean oil polymers may prove useful where petroleum‐based polymeric materials have found widespread utility. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 658–670, 2001  相似文献   

4.
A novel bismaleimide (DOPO‐BMI) with unsymmetrical chemical structure and DOPO pendant group has been prepared. The particular molecular structure makes DOPO‐BMI show an intrinsic amorphous state with a Tg about 135°C and excellent solubility in most organic solvents, which is beneficial to the processability of bismaleimide composite materials. A series of bismaleimide‐triazine (BT) resins have been prepared based on DOPO‐BMI and 2,2‐bis(4‐cyanatophenyl)propane at various weight ratios. The prepared BT resins show outstanding solubility in organic solvent and low viscosity about 10–671 mPa s at 180°C. The cured BT resins exhibit high glass transition temperature (Tg) over 316°C. As the weight ratio of DOPO‐BMI increases to 80% (BT80), the Tg can rise to 369°C (tan δ). The cured BT resins also show good thermal stability with the 5% weight loss temperature over 400°C under both nitrogen and air atmosphere. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42882.  相似文献   

5.
The melting, isothermal and nonisothermal crystallization behaviors of poly(3‐hydroxybutyrate) (PHB) have been studied by means of temperature modulated differential scanning calorimetry (TMDSC) and conventional DSC. Various experimental conditions including isothermal/annealing temperatures (80, 90, 100, 105, 110, 120, 130, and 140°C), cooling rates (2, 5, 10, 20, and 50°C/min) and heating rates (5, 10, 20, 30, 40, and 50°C/min) have been investigated. The lower endothermic peak (Tm1) representing the original crystals prior to DSC scan, while the higher one (Tm2) is attributed to the melting of the crystals formed by recrystallization. Thermomechanical analysis (TMA) was used to evaluate the original melting temperature (Tmelt) and glass transition temperature (Tg) as comparison to DSC analysis. The multiple melting phenomenon was ascribed to the melting‐recrystallization‐remelting mechanism of the crystallites with lower thermal stability showing at Tm1. Different models (Avrami, Jeziorny‐modified‐Avrami, Liu and Mo, and Ozawa model) were utilized to describe the crystallization kinetics. It was found that Liu and Mo's analysis and Jeziorny‐modified‐Avrami model were successful to explain the nonisothermal crystallization kinetic of PHB. The activation energies were estimated in both isothermal and nonisothermal crystallization process, which were 102 and 116 kJ/mol in respective condition. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42412.  相似文献   

6.
Polyimide (PI) with thiazolylazo side chain was prepared via a post azocoupling reaction scheme. The PI film could easily be obtained by spin coating and consequent imidization from the precursor polymer, which was soluble in several polar organic solvents such as N‐methyl‐2‐ketopyrrolidine and N,N‐dimethylformarride. The polymer showed a reverse trans–cis photoisomerization when irradiated by the lights of 365 nm and 440 nm. The glass‐transition temperature (Tg) and temperature at 10% of weight loss under N2 of the polymer are 138.9°C and 510.6°C, respectively, which confirm that the thermal stability of the polymer is quite good. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A kind of novel poly(phenylene sulfide)s (PPSs) containing a chromophore group were synthesized by the reaction of dihalogenated monomer and sodium sulfide (Na2S.xH2O) via nucleophilic substitution polymerization under high pressure. The polymers were characterized by Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, XRD, DSC, TGA, mechanical testing and dissolvability experiments. The intrinsic viscosity of the polymers obtained with optimum synthesis conditions was 0.22 ? 0.38 dl g?1 (measured in 1‐chloronaphthalene at 208 °C). These polymers were found to have good thermal performance with a glass transition temperature (Tg) of 90.5 ? 94.6 °C and initial degradation temperature (Td) of 475–489 °C, showing improved thermal properties compared with homo‐PPS. At the same time the resultant resins had a high tensile strength of 67.5 ? 74.1 MPa and compressive strength of 70.7 ? 85.4 MPa. Additionally, these polymers exhibited a weak UV ? visible reflectivity minimum at 450–570 nm, and the fluorescence spectra of the polymers showed maximum emission around nearly 370 nm. Also they showed excellent chemical resistance and another special property ? bright shiny colors changed into different colors in acid solution. © 2014 Society of Chemical Industry  相似文献   

8.
Effect of glass transition temperature and saturation temperature on the solid‐state microcellular foaming of cyclic olefin copolymer (COC)—including CO2 solubility, diffusivity, cell nucleation, and foam morphology—were investigated in this article. COCs of low Tg (78°C) and high Tg (158°C) were studied. Solubilities are 20–50% higher in high Tg COC than in the low Tg COC across the saturation temperature range. Diffusivities are about 15% higher on average in high Tg COC for temperatures up to 50°C. A much faster increase of diffusivity beyond 50°C is observed in low Tg COC due to it being in the rubbery state. Under similar gas concentration, high Tg COC starts foaming at a higher temperature. And the foam density decreases faster in low Tg COC with foaming temperature. Also, high Tg COC foams show about two orders of magnitude higher cell nucleation density than the low Tg COC foams. The effect of saturation temperature on microcellular foaming can be viewed as the effect of CO2 concentration. Nucleation density increases and cell size decreases exponentially with increasing CO2 concentration. Uniform ultramicrocellular structure with an average cell size of 380 nm was created in high‐Tg COC. A novel hierarchical structure composed of microcells (2.5 μm) and nanocells (cell size 80 nm) on the cell wall was discovered in the very low‐density high‐Tg COC foams. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42226.  相似文献   

9.
The low‐temperature physical aging of amorphous poly(L ‐lactide) (PLLA) at 25–50°C below glass transition temperature (Tg) was carried out for 90 days. The physical aging significantly increased the Tg and glass transition enthalpy, but did not cause crystallization, regardless of aging temperature. The nonisothermal crystallization of PLLA during heating was accelerated only by physical aging at 50°C. These results indicate that the structure formed by physical aging only at 50°C induced the accelerated crystallization of PLLA during heating, whereas the structure formed by physical aging at 25 and 37°C had a negligible effect on the crystallization of PLLA during heating, except when the physical aging at 37°C was continued for the period as long as 90 days. The mechanism for the accelerated crystallization of PLLA by physical aging is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Poly[1,3‐bis(aminomethyl)cyclohexaneoxamide] (PBAC2) was synthesized using 1,3‐bis(aminomethyl)cyclohexane (BAC) and dibutyl oxalate (DO) via spray/solid‐state polycondensation (SSP). The structure of the synthesized polyoxamide was confirmed by 1H‐nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. The weight average molecular weight (Mw) of the polyoxamides prepared was 1.35 × 105. The polyoxamides showed excellent thermal properties with glass transition temperature (Tg) of 150 °C, melting temperature (Tm) of 318 °C, crystallization temperature(Tc) of 253 °C, and initial degradation temperature (Td) of 417 °C suggesting higher thermal stability than commercial polyamide 6 (Td = 378 °C). Kinetic studies of PBAC2 predicted a two‐dimensional crystal growth. X‐ray diffraction powder diffraction suggested that the polymer has high crystallinity. A saturated water absorption of 2.8 wt % was recorded for the new polyoxamide, giving it a competitive edge for applications in civil aviation, reinforced plastics, and electronics industry where precise dimensional stability and high thermal resistance properties are a priority. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46345.  相似文献   

11.
To solve the penetration depth of carbon fiber/epoxy prepreg and irradiation dose uniformity by low‐energy E‐Beam under 125 keV, the both‐side irradiation curing of prepreg was investigated. The results show that there is little thermal effect during the low‐energy electron beam irradiation curing process, even though the irradiation dosage reached 300 kGy, only 46.2°C can be tested on the prepreg surface. Due to the low curing temperature, the degree of cure of prepreg was only 61.8% at 300 kGy level of irradiation, and the glass‐transition temperature (Tg) was only 48.6°C. The degree of cure and Tg can be increased sharply by thermal postcure. After being postcured at 160°C for 30 min, the degree of cure and the Tg of prepreg reached 98.5% and 170.4°C, respectively. Interlaminar shear strength testing result indicate that the fabrication process of the composite layer by layer curing by the low‐ energy E‐Beam is a promising cure approach. POLYM. COMPOS., 36:1731–1737, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A two‐component waterborne polyurethane (2K‐WPU) is prepared with the terpene‐maleic ester type epoxy resin‐based polyol dispersion and a hydrophilically modified hexamethylene diisocyanate tripolymer. Laser particle size analyzer and transmission electron microscopy are used to characterize the particle size distribution and the micromorphology of the 2K‐WPU. Crosslinking reaction kinetics of the 2K‐WPU is examined by fourier transform infrared spectrometry (FTIR) spectra. In the preliminary stage of the crosslinking reaction, it shows a very good fit with a second order reaction kinetics, and the apparent activation energy is 94.61 kJ mol?1. It is also shown from the FTIR spectra that the complete crosslinking reaction of the 2K‐WPU needs 7 h at 70°C. The crosslinked products of the 2K‐WPU have good thermal resistant properties, with glass‐transition temperatures (Tg) in the range of 35–40°C and 10% weight loss temperatures (Td) in the range of 275–287°C. The films obtained from the crosslinked products have good water‐resistance, antifouling, blocking resistance properties and impact strength of >50 cm, flexibility of 0.5 mm, adhesion of 1 grade, pencil hardness of HB‐2H. The pencil hardness and thermal‐resistant properties of the crosslinked products increase with the molar ratio of isocyanate (? NCO) group to hydroxyl (? OH) group. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Thermal mechanical stresses of glass‐ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (Tset) 500°C to ?55°C, and then back to 600°C. Two glass‐ceramics having an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but very different linearity of thermal strains, designated as near‐linear NL16 and step‐like SL16, were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass‐ceramic when the GCtSS seal cools from Tset. Upon heating tensile stresses start to develop at the GC‐SS interface before the temperature reaches Tset. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass‐ceramic allows for radially compressive stress at the GC‐SS interface to remain present when the seal is heated back to Tset. The qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass‐ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high‐temperature and/or high‐pressure abnormal environments.  相似文献   

15.
Heteroaromatic 6,6′‐bis[2‐(4‐aminobenzene)benzimidazole] and its corresponding copolyimides were synthesized to produce high temperature resistant polyimides (PIs). Due to the rigidity and aromaticity of heterocyclic bis‐benzimidazole, and the increased hydrogen bonding interactions, these PIs were found to have a high glass transition temperature (Tg) over 457 °C, which also guarantees a better dimensional stability with a coefficient of thermal expansion (CTE) lower than 10 ppm K?1 in a wider temperature range of 50–400 °C. In addition, the PIs exhibit excellent thermal stability (5% weight loss temperature higher than 559 °C) along with outstanding mechanical properties. This study demonstrates the viability to access PIs with ultrahigh Tg and low CTE in a wider range of temperature by the incorporation of bis‐benzimidazole moieties. © 2019 Society of Chemical Industry  相似文献   

16.
A novel chiral azobenzene polyurethane (CAPU) was prepared from chromophore, chiral reagent L (?)‐tartaric acid and toluene diisocyanate (TDI). The chemical structure and the thermal property were characterized by UV‐Vis spectrum, FT‐IR, 1H NMR, circular dichroism (CD) spectrum, differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). DSC and TGA experiments showed that the glass transition temperature (Tg) and the decomposition temperature (Td) at 5% mass loss were 110°C and 199°C, respectively. The refractive index (n) and thermo‐optic coefficient (dn/dT) of the CAPU were measured at 650 nm wavelength and different temperature by attenuated total reflection (ATR) technique. By using CCD digital imaging devices, transmission loss of CAPU was measured and the value is 0.565dB/cm. The results will provide the foundation for many potential applications such as digital thermo‐optic switch materials and other fields in the future. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
3,6‐bi(4‐fluorobenzoyl)‐N‐methylcarbazole and 3,6‐bi(4‐fluorobenzoyl)‐N‐ethylcarbazole were synthesized and used to prepare poly(arylene ether ketone)s (PAEKs) with high glass transition temperatures (Tg) and good solubility. High molecular weight amorphous PAEKs were prepared from these two difluoroketones with hydroquinone, phenolphthalein, 9,9‐bis(4‐hydroxyphenyl)fluorene and 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, respectively. All these polymers presented high thermal stability with glass transition temperatures being in the range 239–303 °C and a 5% thermal weight loss temperature above 460 °C. Compared with the Tg of phenolphthalein‐based PAEK (PEK‐C), fluorene‐based PAEK (BFEK) and phthalazinone‐based PAEK (DPEK) not containing a carbazole unit, these polymers presented a 30–50 °C increase in Tg. Meanwhile, PAEKs prepared from N‐ethylcarbazole difluoroketone showed good solubility in ordinary organic solvents, and all polymers exhibited excellent resistance to hydrochloric acid (36.5 wt%) and sodium hydroxide (50 wt%) solutions. In particular, phthalazinone‐based PAEK bearing N‐ethylcarbazole afforded simultaneously a Tg of 301 °C with good solubility. Tensile tests of films showed that these polymers have desirable mechanical properties. The carbazole‐based difluoroketones play an important role in preparing soluble PAEKs with high Tg by coordinating the relationship between chain rigidity resulting from the carbazole unit and chain distance from the side alkyl. © 2014 Society of Chemical Industry  相似文献   

18.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
Heat‐resistant branched poly(styrene‐alt‐NPMI) has been prepared via atom transfer radical polymerization (ATRP) of styrene (St) and N‐phenyl maleimide (NPMI) with divinylbenzene (DVB) as the branching agent in anisole at 80°C. Gas chromatography (GC) was used to determine the conversion of the reactants. Triple detection gel permeation chromatography (TD‐GPC) was used to analyze the copolymers. The results show that the polymerization yields primary chains predominately in the early stages and the formation of branched molecules occurs mainly when conversion is higher than 50%. As expected, higher dosage of DVB in our investigation range favors the formation of polymers with higher degree of branching. All the resulting branched poly(styrene‐alt‐NPMI)s have glass transition temperature (Tg) above 175°C, extrapolated initial weight loss temperature (Ti) above 410°C and statistic heat‐resistant index above 200°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A series of poly(urethane)s (PUs) based on diphenyl‐silane or ‐germane and oxyphenyl units were synthesized by polycondesation of 4‐[4‐[9‐[4‐(4‐aminophenoxy)‐3‐methyl‐phenyl]fluoren‐9‐yl]‐2‐methyl‐phenoxy]aniline (3) and four bis(chloroformate)s ( I–IV ). These monomers were prepared and characterized in previous works. The best conditions for the polymerization reactions were investigated by a kinetic study. Also, a selection of the best solvent for the reaction was developed. Polymers were characterized by IR and 1H, 13C, and 29Si‐NMR spectroscopy and the results were in agreement with the proposed structures. Poly(urethane)s showed inherent viscosity values between 0.12 and 0.31 dL/g, indicative of low molecular weight species, probably of oligomeric nature. The glass transition temperature (Tg) values were observed in the 127–168°C range by DSC analysis. Thermal decomposition temperature (TDT10%) values were above 300°C. All PUs showed good transparency in the visible region (>80% at 350 nm) due to the incorporation of the bulky monomer (fluorene) and oxyether linkages. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号