首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
沥青混合料疲劳模型研究分析   总被引:2,自引:0,他引:2  
谢军  杨群 《交通科技》2006,54(5):93-96
总结了目前国内外沥青混合料基本疲劳力学模型,简要分析了不同模型的特点及差别,认为其分别是在不同的试验方法、试验条件及考虑不同的参数下所得出,各自有具体适用范围,使用中应结合本地区具体条件通过实验修正得到疲劳模型。  相似文献   

2.
文中介绍一种简单合理的疲劳试验仪器和分析方法。先通过3种循环扭转荷载试验,确定基本线粘弹材料特性和沥青基体的疲劳特性;再利用图片进行破坏分析,发现通常沥青基体试验结果不但与沥青胶结料试验数据一致,且与沥青混凝土疲劳试验结果相吻合。研究发现,这是一种快速、可重复且精确度高的试验方法。  相似文献   

3.
能量方法分析沥青混合料的疲劳特性   总被引:5,自引:0,他引:5  
  相似文献   

4.
沥青混合料疲劳性能的影响因素分析   总被引:4,自引:0,他引:4  
研究荷载间歇时间,加载频率,试验温度,空隙率,沥青针久度,沥青用量6因素对沥青混合料疲劳性能的影响程度。首先,运用正交设计的方法将影响因素适当组合,在MTS810材料试验系统上进行不同条件下的应力控制的疲劳试验;然后,分析各影响因素对沥青混合料疲劳寿命的影响程度;最后,讨论各因素是如何影响沥青混合料的疲劳性能的。研究表明,各因素对沥青混合料疲劳性能影响程度大小顺序为:荷载间歇时间→试验温度→沥青品种→级配类型→沥青用量→加载频率。  相似文献   

5.
运用耗散能理论分析了沥青混合料的疲劳过程,得到了沥青混合料的疲劳方程。结果表明,累计耗散能与疲劳寿命在对数坐标中表现出较好的线性关系。  相似文献   

6.
再生沥青混合料疲劳性能试验研究   总被引:10,自引:0,他引:10  
为了评价掺有再生沥青路面(RAP)材料的沥青混合料的疲劳性能,以及不同RAP材料用量对沥青混合料疲劳性能的影响,进行了室内再生沥青混合料疲劳试验研究。疲劳试验中采用了沥青路面表面层沥青混合料,选用了间接拉伸(IDT)强度试验和半圆弯曲(SCB)疲劳试验方法,进行了RAP材料质量分数分别为0%、10%、20%和30%的疲劳试验。试验结果表明:沥青混合料中RAP材料质量分数小于20%时,对沥青混合料疲劳性能影响不大,而RAP材料质量分数为30%时,疲劳性能明显下降。初步建议了表层沥青混合料合适的RAP材料质量分数不宜超过20%。  相似文献   

7.
首先介绍疲劳累积损伤定律在沥青类材料中的应用,针对不同模型的特点及应用条件,采用Lemaitre疲劳累积损伤模型作为沥青混合料疲劳损伤模型,通过进行疲劳损伤实验设计,获得沥青类材料疲劳损伤特性参数,为计算材料疲劳损伤程度奠定了基础。  相似文献   

8.
已有文献表明加载频率对于疲劳寿命的影响较大,对于沥青砼.其影响可能更显著。根据沥青混合料的室内低频疲劳试验,运用耗散能理论,得到沥青混合料的低频疲劳规律。  相似文献   

9.
针对沥青混合料疲劳耐久性设计参数的不确定性与不科学性问题,从疲劳试验方法及疲劳性能表征模型两方面对沥青混合料疲劳性能表征的发展现状、存在的问题进行了综述,并总结了其未来发展方向。沥青混合料疲劳性能主要通过室内外不同疲劳试验进行研究,不同试验方法所用沥青混合料试件的尺寸、形状,试件内部所处应力状态及试验条件皆各不相同,而沥青混合料是一种由沥青结合料与不同粒径矿料通过搅拌和碾压而成的多相、多组分、多尺度黏弹性混合料,其力学响应具有显著的时间、温度与应力状态相关性,不同试验方法所对应的加载速度、试验温度及应力状态存在较大的差异性,故其试验结果呈现出显著的不确定性,其疲劳性能表征模型参数也存在显著的差异性;此外,常用的室内材料疲劳试验方法大多为一维或二维应力状态下的疲劳试验,这与沥青路面结构实际服役过程中所处的三维应力状态不符;沥青混合料疲劳性能表征方程大多来源于一维应力状态下的疲劳试验结果,因此,用简单应力状态下的材料疲劳试验方法与性能表征模型难以客观表征三维应力状态下沥青路面结构的疲劳抗力,从而导致沥青路面疲劳耐久性设计存在较大的偏差。建议开发与沥青路面服役状态一致的三维应力状态下的疲劳试验方法,并建立三维应力状态下疲劳表征模型,以消除不同试验方法及试验条件对沥青混合料疲劳性能表征的影响,提高沥青混合料疲劳性能表征的有效性与完备性。  相似文献   

10.
利用沥青路面分析仪(APA)对SAC-20和SAC-25沥青混合料进行了疲劳性能试验,并对试验结果进行了分析,得出了SAC-25的疲劳寿命大于SAC-20、SAC-20上限的疲劳寿命大于SAC-20下限的结论.  相似文献   

11.
应用疲劳损伤力学基本原理,探讨了适用于沥青路面轴载换算的新方法,并对该方法拟合的公式与规范按弯沉等效推荐的当量轴载换算公式进行了比较。计算结果表明在进行沥青路面轴载换算时,采用不同的等效换算原理,将导致非标准轴载与标准轴载当量换算系数上的不同,前者较后者大。这种差异一方面直接影响沥青路面的结构厚度设计,对设计年限内累计当量标准轴载作用次数的低估,必然导致沥青路面早期破损现象的发生;另一方面揭示弯沉等效表征的是路面结构的瞬间刚度性质,代替不了路面结构的长期疲劳强度特性。  相似文献   

12.
通过有限元计算对比分析了普通小梁和复合小梁的应力分布规律,设计并实施了室内重复弯曲试验,得到不同条件下小梁的疲劳寿命,运用回归分析建立了小梁疲劳方程,研究表明聚合物改性水泥基材料对沥青混合料小梁的疲劳性能有显著改善。  相似文献   

13.
大粒径沥青混合料由于其一般应用于基层,处于受拉的应力状态,在荷载的反复作用下,易产生疲劳断裂破坏。本文从级配、沥青用量、温度、沥青种类和格栅加筋等方面对大粒径沥青混合料的疲劳性能进行了研究,得出一些有参考价值的结论。  相似文献   

14.
沥青混合料疲劳响应模型试验研究   总被引:2,自引:0,他引:2  
首先总结分析了沥青混合料不同疲劳试验方法的特点、两种疲劳试验控制模式的适用范围,建议采用应力控制模式的间接拉伸疲劳试验方法。然后分析了不同试验因素的影响,选定了加载波型,确定了疲劳试验的应力比水平、频率及温度等试验参数的范围。采用旋转压实成型方法,对3种沥青混合料进行试件成型。分别考虑3种空隙率水平,应用均匀试验设计方法,进行了不同温度、频率、应力比水平下的间接拉伸疲劳试验,对试验结果进行了显著性分析,并应用多元线性回归方法,得到了适用于不同荷载条件下基于温度、频率、沥青饱和度、初始应变及初始劲度模量的沥青混合料疲劳模型。与国外疲劳模型进行了对比分析,表明得到的疲劳模型具有较好的比对性,可用于沥青混合料疲劳寿命的预估。  相似文献   

15.
为了表征沥青混合料的力学行为,以不可逆热力学理论为基础,推导出沥青混合料粘弹-粘塑性损伤本构模型;将建立的本构模型用于分析沥青混合料三轴蠕变试验和等应变速率压缩试验.结果表明:该模型能够合理描述沥青混合料蠕变试验的三阶段,准确表征其三维变形特征,并能从机理上分析沥青混合料的变形行为;可以较准确地预估等应变速率压缩试验中的应力-应变发展规律及应力峰值和体积变形规律;所提出的粘弹-粘塑性损伤本构模型能够表征沥青混合料在多种压缩加载模式下的力学行为特征.  相似文献   

16.
沥青混合料的疲劳效应研究   总被引:5,自引:0,他引:5  
对沥青混凝土梁式试件进行不同温度、不同应力水平条件下的拉伸疲劳试验,结果表明累计耗散能与疲劳寿命在双对数坐标中表现出较好的线性关系,温度和应力水平等试验条件对该关系的影响较小可以忽略。因此,指出可以采用累计耗散能理论来分析沥青混凝土的疲劳性能。运用该理论,通过对大量不同试验条件下的疲劳试验结果的分析,建立了沥青混凝土的疲劳方程。  相似文献   

17.
为了研究沥青混合料在重复荷载作用下的疲劳特性并描述疲劳-蠕变损伤效应共同作用的过程,考虑沥青混合料具有的动态性质,从粘弹性损伤力学基本理论出发,基于应变等效假设,采用复数模量定义了损伤变量。通过分析沥青混合料在周期荷载作用下的损伤变化规律,运用疲劳-蠕变耦合损伤理论,建立了疲劳-蠕变损伤效应共同作用时的损伤演化方程,提出了体现温度及应力影响的损伤模型和疲劳寿命预测模型,并对损伤模型进行了分析。研究结果表明:构建的损伤模型满足热力学准则和物理条件;沥青混合料疲劳失效是由疲劳-蠕变损伤效应共同影响所致;利用提出的疲劳模型可以更好地预测不同温度和应力条件下的沥青混合料疲劳寿命。  相似文献   

18.
基于沥青混合料的力学强度、路用性能和微观结构及体积指标,用最大粘结力法、最大疲劳寿命法和沥青体积法设计沥青混合料的最佳油石比,并分析对比各方法的优缺点。  相似文献   

19.
介绍了沥青混合料的滞后回路方程和能耗分析方法,并用能量法分析了钢桥面沥青混合料铺装体系疲劳特性, 提出了疲劳寿命预测公式。通过南京长江第二大桥钢桥面铺装体系疲劳试验结果的实例分析,表明能量法可用于分析钢桥面沥青混合料铺装体系疲劳特性,其疲劳寿命预测结果是较为精确的,而且指出了环氧沥青混凝土铺装具有很好的抗疲劳性能。  相似文献   

20.
用粘弹性理论评价沥青混合料的高温稳定性   总被引:5,自引:4,他引:5  
根据同济大学提出的四单元五参数模型,采用沥青混合料变形的粘性部分来评价沥青混合料的高温稳定性,认为四单元五参数模型能较好地模拟沥青混合料的高温稳定性,并根据动蠕变实验推出模型中的粘弹性参数,导出了模型中五参数与车辙试验动稳定度之间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号