首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study investigates the tool wear in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a conical tungsten carbide tool used for friction drilling a low carbon steel workpiece is studied. Tool wear characteristics are quantified by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectrometry is applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size are measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11,000 holes, but observations also indicate the progressively severe abrasive grooving on the tool tip.  相似文献   

2.
The thrust force, torque, and tool wear in drilling of Zr-based bulk metallic glass (BMG) material are investigated. Drilling the BMG at high speed generates the chip light emission, high tool temperature, and severe tool wear. At low spindle speed, the BMG work-material builds up at the major and margin cutting edges and may break the drill. A range of feasible spindle speed and feed rate for the efficient drilling of BMG without the detrimental chip light emission and cutting edge work-material build-up has been identified in this study. Under the same drilling condition, the WC-Co tool generally requires less thrust force and about the same torque than the high-speed steel tool. The progressive wear of the major and margin cutting edges for BMG drilling is examined. Severe drill wear is associated with the bright BMG chip light emission. Without chip light emission, the drill wear is visible but not severe. This study concluded that precision holes in BMG could be generated with proper selection of tooling and process parameters.  相似文献   

3.
6061铝合金双轴肩搅拌摩擦焊接扭矩特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了揭示6061铝合金BTFSW过程中焊接扭矩的特征,对扭矩进行了检测,分析了扭矩信号的频谱特征、扭矩峰值的变化特点、扭矩振荡与焊缝表面成形的关系.研究表明扭矩具有周期性,主要频率接近于2倍主轴旋转频率值,频差的存在说明了焊接区域存在搅拌头与不同速率的金属流之间挤压摩擦的叠加行为;当接触点温度小于500℃时,扭矩峰值随着焊接速度的提高而变大,随着旋转速度的提高而变小;正常较小的扭矩振荡不影响表面成形,但当接触点温度大于550℃、上下轴肩间距过小或焊接速度过小或旋转速度过大等时,扭矩易发生异常振荡.对进一步揭示深入研究BTFSW焊接机理、搅拌头三维受力特征及其与焊接参数、焊接质量的关系有着重要的推动意义.  相似文献   

4.
Dry and minimum quantity lubrication (MQL) drilling of cast magnesium alloy AM60 used in the manufacturing of lightweight automotive components have been studied. The maximum and average torque and thrust forces measured during drilling using distilled water (H2O-MQL) and a fatty acid-based MQL fluid (FA-MQL), both supplied at the rate of 10 ml/h, were compared with those generated during flooded (mineral oil) drilling. Tool life during dry drilling was inadequately short, due to excessive magnesium transfer and adhesion to the (HSS steel) drill causing drill failure in less than 80 holes. The use of MQL reduced magnesium adhesion and built-up edge formation, resulting in an increase in tool life as well as reductions in both average torque and thrust forces—prompting a performance similar to that of flooded drilling. The maximum temperature generated in the workpiece during MQL drilling was lower than that observed in dry drilling, and comparable to flooded condition. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements near the holes, revealed a notable softening in the case of dry drilling, but not for MQL drilling. MQL drilling provided a stable drilling performance, which was evident from the uniform torque and force patterns throughout the drilling cycles and also resulted in desirable machining characteristics, including a smooth hole surface and short chip segments.  相似文献   

5.
田卫军  李郁  何扣芳 《机床与液压》2014,42(21):161-163
为了提高TC4钛合金的可钻削性,采用有限元分析软件AdvantEdge建立TC4钛合金铣削加工有限元模型,分析工件和刀具上的温度分布规律,获得了钻削加工过程中钻削参数对钻削力和钻削温度的影响规律。结果表明:钻削TC4钛合金时最高温度出现在切屑上;钻削力随着主轴转速和进给量的增加而增大,随着钻头直径的增大而减小;钻削温度随着主轴转速、进给量和钻头直径的增加而增大。  相似文献   

6.
The thrust force and torque produced during drilling contain important information related to the quality of the hole and the wear of the drill bit [1]. In this paper, the force and torque produced during drilling of carbon fibre using a ‘one shot’ drill bit is investigated. The signals in the time domain were divided into stages and common problems and defects associated with each stage discussed. It is also shown how tool wear and thickness of the workpiece affect the thrust force and torque throughout the drilling process. The findings of this paper are used to develop a mathematical model of the maximum thrust force and torque as described on Part II of this paper and are a valuable reference for future optimisation of drilling carbon composites with a ‘oneshot’ drill bit.  相似文献   

7.
Aluminium alloys, though widely used in the automotive industry, are difficult to machine, particularly by drilling and tapping without the use of metal removal fluids, because of aluminium's strong tendency to adhere to the cutting tool. Tribological tests have revealed that carbon-based tool coatings, such as diamond-like carbon (DLC), promise an improved performance due to their low friction and adhesion. However, the tribological performance of DLC coatings depends on both their hydrogen content and the testing environments. Hence the experimental approach taken in this study was designed to understand the cutting performance of hydrogenated DLC (H-DLC) and non-hydrogenated DLC (NH-DLC) tool coatings during the dry drilling of a 319 Al (Al–6%Si) alloy. An experimental drilling station was built to measure torque and thrust force changes using a cutting speed of 2500 rpm and a feed rate of 0.25 mm/rev. The cutting performance was assessed by measuring the torques and thrust forces generated during the drilling of the first 150 holes or by drill failure—depending on which occurred first. The results indicated that superior cutting performance was achieved, in both torque and thrust force responses, using DLC-coated drills rather than uncoated high-speed steel (HSS) drills. The uncoated HSS drills failed after drilling only 49 holes as a result of excessive aluminium adhesion. At least 150 holes could be drilled using the DLC-coated drills, and both the torque and thrust forces generated during drilling were lower than those with uncoated HSS drills. In addition, a smaller proportion of holes exhibited abrupt increases in torque (at the end of the drilling cycle) during drilling with the DLC-coated drills. Scanning electron microscopy (SEM) investigations showed that the H-DLC drill flutes displayed minimal aluminium clogging—resulting in lower torque. H-DLC coating also diminished metal transfer and buildup edge formation on the drill's flank face and cutting edge. Thus, torque and thrust force measurements, supported by metallographic data, indicated that H-DLC-coated drills provided better dry drilling performance than NH-DLC.  相似文献   

8.
Friction drilling, also called thermal drilling, is a novel sheet metal hole-making process. The process involves forcing a rotating, pointed tool through a sheet metal workpiece. The frictional heating at the interface between the tool and workpiece enables the softening, deformation, and displacement of work-material and creates a bushing surrounding the hole without generating chip or waste material. The bushing can be threaded and provides the structural support for joining devices to the sheet metal. The research characterizes the microstructures and indentation hardness changes in the friction drilling of carbon steel, alloy steel, aluminum, and titanium. It is shown that materials with different compositions and thermal properties affect the selection of friction drilling process parameters, the surface morphology of the bore, and the development of a highly deformed layer adjacent to the bore surface.  相似文献   

9.
Friction drilling utilizes the heat generated from the friction between the tool and the thin workpiece to form a bush for fixtures such as screw threads in plastic deformation process. This process produces no chip, shortens the time required for hole-making and incurs less tool wear, thus lengthening the service life of the drill. In this study, tungsten carbide drills with and without coating were employed to make holes in AISI 304 stainless steel, which is known to have high ductility, low thermal conductivity and great hardness. TiAIN and AlCrN were coated onto the drill surface by physical vapor deposition (PVD). Performance of coated and uncoated cutting tools was examined for drillings made under different spindle speeds. Changes in relationship between drill surface temperature, tool wear and axial thrust force during machining were also explored. Experimental results reveal that lubricating effect of the coating and low thermal conductivity of AlCrN caused AlCrN-coated drill to produce the highest surface temperature but the lowest axial thrust force with the least tool wear. However, the difference in performance between coated and uncoated drills diminished with increase in number of holes drilled.  相似文献   

10.
This two part paper presents a comprehensive exercise in modeling dynamics, kinematics and stability in drilling operations. While Part II focuses on the chatter stability of drilling in frequency domain, Part I presents a three-dimensional (3D) dynamic model of drilling which considers rigid body motion, and torsional–axial and lateral vibrations in drilling, and resulting hole formation. The model is used to investigate: (a) the mechanism of whirling vibrations, which occur due to lateral drill deflections; (b) lateral chatter vibrations; and (c) combined lateral and torsional–axial vibrations. Mechanistic cutting force models are used to accurately predict lateral forces, torque and thrust as functions of feedrate, radial depth of cut, drill geometry and vibrations. Grinding errors reflected on the drill geometry are considered in the model. A 3D workpiece, consisting of a cylindrical hole wall and a hole bottom surface, is fed to the rotating drill while the structural vibrations are excited by the cutting forces. The mechanism of whirling vibrations is explained, and the hole wall formation during whirling vibrations is investigated by imposing commonly observed whirling motion on the drill. The time domain model is used to predict the cutting forces and frequency content as well as the shape of the hole wall, and how it depends on the amplitude and frequency of the whirling vibration. The model is also used to predict regenerative, lateral chatter vibrations. The influence of pilot hole size, spindle speed and torsional–axial chatter on lateral vibrations is observed from experimental cutting forces, frequency spectra and shows good similarity with simulation results. The effect of the drill–hole surface contact during drilling is discussed by observing the discrepancies between the numerical model of the drilling process and experimental measurements.  相似文献   

11.
A time domain model of the torsional–axial chatter vibrations in drilling is presented. The model considers the exact kinematics of rigid body, and coupled torsional and axial vibrations of the drill. The tool is modeled as a pretwisted beam that exhibits axial and torsional deflections due to torque and thrust loading. A mechanistic cutting force model is used to accurately predict the cutting torque and thrust as a function of feedrate, radial depth of cut, and drill geometry. The drill rotates and feeds axially into the workpiece while the structural vibrations are excited by the cutting torque and thrust. The location of the drill edge is predicted using the kinematics model, and the generated surface is digitized at discrete time intervals. The distribution of chip thickness, which is affected by both rigid body motion and structural vibrations, is evaluated by subtracting the presently generated surface from the previous one. The model considers nonlinearities in cutting coefficients, tool jumping out of cut and overlapping of multiple regeneration waves. Force, torque, power and dimensional form errors left on the surface are predicted using the dynamic chip thickness obtained from the exact kinematics model. The stability of the drilling process is also evaluated using the time domain simulation model, and compared with extensive experiments. This paper provides details of the mathematical model, experimental verification and simulation capabilities. Although the surface finish from unstable cutting can be predicted realistically, the actual drilling stability cannot be determined without including process damping.  相似文献   

12.
In order to extend tool life and improve quality of hole drilling in carbon composite materials, a better understanding of ‘one shot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘one shot’ drill bit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill bit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drill bit, the feed used and the thickness of the workpiece. The model presented here is verified by extensive experimental data.  相似文献   

13.
采用自适应网格方法,建立搅拌摩擦焊接过程的完全热力耦合热刚粘塑性有限元模型,模拟搅拌摩擦焊接过程中工件的温度场、变形场和搅拌头的受力。计算结果表明,温度场关于搅拌头的分布为非对称,焊接在前行侧的有效应变高于其返回侧;沿焊缝区域的温度场、应变场分布是由工件的上表面至底面,呈自上而下的顺序递减。对搅拌头反力曲线的研究表明,在相同的转速下,焊接速度越快,其反力越大;在相同的焊接速度下,转速越大,其反力越小;搅拌头的受力峰值产生在预热阶段结束和搅拌头开始移动的时刻,在给定搅拌头倾角的情况下,搅拌头的最高温度产生在搅拌头的后侧。  相似文献   

14.
An analytical finite element technique was developed for predicting the thrust force and torque in drilling with twist drills. The approach was based on representing the cutting forces along the cutting lips as a series of oblique sections. Similarly, cutting in the chisel region was treated as orthogonal cutting with different cutting speeds depending on the radial location. For each section, an Eulerian finite element model was used to simulate the cutting forces. The section forces were combined to determine the overall thrust force and drilling torque. Good agreement between the predicted and measured forces and torques was found in orthogonal and oblique cutting and in drilling tests. The drilling tests were performed on AISI 1020 for several drill diameters, spindle speeds, and feed rates. An extension of the technique for predicting drill temperatures has also been described.  相似文献   

15.
在BTA深孔钻削过程中,工件的振动是导致孔加工质量和精度降低的重要因素。通过实验和MATLAB拟合分析不同的切削参数(进给量f、切削速度v、主轴转速n)对工件振动的影响。分析结果表明,在深孔加工过程中,工件的中间位置振幅最大;随着进给量的和切削速度的增大,工件的振幅增大,振幅增大量先增大后减小;主轴转速的变化对工件的振动影响很小。合理的选择切削参数可以降低工件的振动。  相似文献   

16.
针对9Cr18Mo马氏体不锈钢航空喷嘴小孔的钻削加工,基于DEFORM-3D有限元软件,开展硬质合金钻头几何结构和加工工艺参数优化仿真与试验研究.基于钻削刀具的螺旋槽和后刀面数学模型,采用UG三维建模软件建立钻头三维模型,利用DEFORM-3D软件建立钻削有限元仿真分析模型,综合分析不同刀具几何结构和工艺参数对排屑、钻...  相似文献   

17.
The effect of vibratory drilling on hole quality in polymeric composites   总被引:1,自引:2,他引:1  
The anisotropy of fiber-reinforced plastics (FRP) affects the chip formation and thrust force during drilling. Delamination is recognized as one of the major causes of damage during drilling of fiber reinforced plastics, which not only reduces the structural integrity, but also has the potential for long-term performance deterioration. It is difficult to produce good quality holes with high efficiency by conventional drilling method. This research concerning drilling of polymeric composites aims to establish a technology that would ensure minimum defects and longer tool life. Specifically, the authors conceived a new drilling method that imparts a low-frequency, high amplitude vibration to the workpiece in the feed direction during drilling. Using high-speed steel (HSS) drill, a series of vibratory drilling and conventional drilling experiments were conducted on glass fiber-reinforced plastics composites to assess thrust force, flank wear and delamination factor. In addition, the process-status during vibratory drilling was also assessed by monitoring acoustic emission from the workpiece. From the drilling experiments, it was found that vibratory drilling method is a promising machining technique that uses the regeneration effect to produce axial chatter, facilitating chip breaking and reduction in thrust force.  相似文献   

18.
In the paper, an adaptive resonance theory (ART2-A) neural network is applied to on-line recognition and avoidance of drilling chatter. It is shown that the ART2-A neural network can adaptively learn the features of the thrust force spectrum in a drilling process. As a result, drilling chatter can be automatically detected when a chatter feature starts to appear in the thrust force spectrum. Once chatter is detected, a spindle speed regulation method to suppress chatter is used. Experiments show that this new developed system can monitor and suppress drilling chatter efficiently even under varying cutting conditions.  相似文献   

19.
基于回归正交试验法设计钻削模拟方案,利用最小二乘法原理得到钻削力的经验公式;基于有限元软件Deform3D平台,建立了用浅孔钻钻削加工45钢的有限元模型,动态模拟浅孔钻钻削过程,获得了浅孔钻钻削加工过程中工件的等效应力和温度,分析预测了加工过程中硬质合金刀具所受的主切削力、径向力以及两刀片所受的扭矩,并评估刀片的磨损情况。  相似文献   

20.
An investigation is made into the effects of liquid carbon dioxide (LCO2) cooling, minimum-quantity lubrication (MQL) and cutting speed in drilling. Experimental measurements of torque, thrust force and temperature are made over a wide range of process and operating conditions. The resulting empirical models are used to quantify the individual contributions of the controlled parameters on drilling performance, and to facilitate temperature-based process optimization. Of particular interest is the need to carefully adjust the LCO2 flow rate for any combination of MQL flow rate and cutting speed. The optimization is validated both in simulation and actual drilling tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号