首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Fuel assembly design study for a reactor with supercritical water   总被引:3,自引:1,他引:3  
The European concept of the High Performance Light Water Reactor (HPLWR) differs from current light water reactors in a higher system pressure beyond the critical point of water, as well as a higher heat-up of the coolant within the core and thus higher core outlet temperatures, leading to a significant increase in turbine power and thermal efficiency of the power plant. The motivation to develop a novel fuel assembly for the HPLWR is caused by the high variation of coolant density in the core by more than a factor of seven. A systematic design study shows that a square fuel assembly with two rows of fuel rods and a central moderator box is best to minimize the structural material, to optimize the moderator to fuel ratio and to reduce differences of fuel rod power. Using neutronic and thermal-hydraulic analyses, a detailed mechanical design of a fuel assembly of the HPLWR has been worked out. Moreover, concepts for the head piece, the foot piece, the steam plenum and the lower mixing plenum, including the lower core plate, have been developed to account for the individual flow paths of this reactor. These allow a leak-tight counter current flow of moderator water and coolant as well as uniform mixing of different mass flows. The assembly design concept can be used as a general key component for any advanced core design of this reactor.  相似文献   

2.
Anticipated-transient-without-scram (ATWS) of the supercritical-pressure light water cooled thermal reactor with downward-flow water rods (Super LWR) is analyzed to clarify its safety characteristics. At loss-of-flow, heat-up of the fuel cladding is mitigated by the water rods removing heat from the fuel channels by heat conduction and supplying their coolant inventory to the fuel channels by volume expansion. The average coolant density is not sensitive to the pressure due to the small density difference between “steam” and “water” at supercritical-pressure. Closure of the coolant outlet of the once-through system causes flow stagnation that suppresses an increase in the coolant density due to an increase in the temperature. Therefore, the increase in power is small for pressurization events. The coolant density and Doppler feedbacks provide good self-controllability of the power against loss-of-flow and reactivity insertion. An alternative action is not needed either to satisfy the safety criteria or to achieve a high-temperature stable condition for all ATWS events. Initiating the automatic depressurization system is a good alternative action that induces a strong core coolant flow and inserts a negative reactivity. It provides an additional safety margin for the ATWS events. Even the high core power rating of the Super LWR has excellent ATWS characteristics, providing a key reactor design advantage.  相似文献   

3.
The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 °C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers in the technologies of light water reactors. More than 20 bachelor or master theses and more than 10 doctoral theses on HPLWR technologies have been submitted at partner organizations of this consortium since the start of this project.  相似文献   

4.
《Annals of Nuclear Energy》2002,29(16):1967-1975
India is presently engaged in the design of an advanced heavy water reactor (AHWR) which utilises thorium as fuel. The AHWR is a boiling light water cooled heavy water moderated reactor where the heat is removed through natural convection. Dysprosium is used as burnable absorber to get a reduction in void reactivity. The design needs to be well validated. The 69 group old WIMS library distributed by NEA in 1980′s is presently being used for the design and analysis of AHWR. We have now undertaken an exercise to study the sensitivity of the design parameters, such as k-infinity and void reactivity with respect to the various datasets which have been made available as part of the IAEA CRP on the final stage of the WIMS library update project (WLUP). The k-infinity variations are within 1% both at the beginning of cycle (BOC) and at the end of cycle (EOC). The results for the coolant void reactivity, however, show significant differences between the different datasets at BOC itself which increases further with burnup. In comparison, the differences for natural uranium fuelled pressurised heavy water reactor (PHWR) lattice are relatively lower. Major source of variations in AHWR lattice are probably coming from Th-233U data.  相似文献   

5.
The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:
• A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.
• Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a ‘reference design’, developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the ‘reference design’ was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to ‘calibrate’ the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly.
• Preliminary selection was made for the HPLWR scale, boundary conditions, core and fuel assembly design, reactor pressure vessel, containment, turbine and balance of plant.
• A review of potentially applicable materials for the HPLWR was completed and a preliminary selection of potential in-vessel and ex-vessel candidate materials was made.
• A thorough review of heat transfer at supercritical pressures was completed together with a thermal-hydraulics analysis of potential HPLWR sub-channels. This analytical tool supports the core and fuel assembly design.
• The RELAP5 and the CATHARE 2 codes are being upgraded to supercritical pressures. Thus they can be used to support the HPLWR core design and to perform plant safety analyses.
• Assessment of the HPLWR design constraints, based on current LWR technology was documented. This document stresses the various criteria that must be satisfied in the design (e.g. material, temperature, power, safety criteria, etc.) based on experience gained in the design of PWR.
• Preliminary economic assessment concluded that the HPLWR has the potential to be economically competitive. However, an accurate assessment can only be done after the HPLWR design has been fixed. A more accurate economic assessment may be performed after the conclusion of this project.

Article Outline

1. Introduction
2. Approach
3. Project objectives and work program
4. Main achievements
4.1. Heat transfer at supercritical pressures
4.2. Cladding materials
4.3. Core design
4.4. Reactor pressure vessel design
4.5. Overall plant concept
4.6. Transient safety analyses
5. Conclusions
Acknowledgements
References

1. Introduction

In view of continuous industrial expansion in industrially developed countries, the need to accelerate the development of underdeveloped countries, the deregulation of electric utilities, the desire to reduce global warming (believed to be directly related to the amount of CO2 in the atmosphere and therefore to be caused by combustion of fossil fuel)—there is a renewed prospect that nuclear energy will once again be in demand. Evidence of this trend is already seen in the United States. During the last 3 years, the US Department of Energy (US DOE) has led an ambitious program, named Generation IV nuclear reactors, with the main objective to help revitalize the nuclear energy option. In order for nuclear energy to be a viable economical option, there is also a continuing need to improve the economics and efficiency of light water reactors (LWR) similarly to the improvements made in fossil power plants.The concept in this HPLWR project, as described by Heusener et al., 2000a and Heusener et al., 2000b, involves an LWR operating in thermodynamically supercritical regime. In a once-through thermodynamic cycle, the water enters the reactor as water and exits as high-pressure steam without change of phase. Consequently, it is expected that this may lead to a simplified plant design. The concept of the once-through supercritical-pressure light water cooled reactor has been studied by the University of Tokyo over the past decade, as reported by Oka and Koshizuka, 1996 and Oka and Koshizuka, 1998, Dobashi et al. (1998), and Lee et al. (1999). It has been reviewed by the Tokyo Electric Power Company and other Japanese industrial companies, and reported by Tanaka et al. (1997). The main advantages of a reactor cooled and moderated by supercritical water are that above the critical pressure of water (22.1 MPa) supercritical water does not exhibit a change of phase and the heat is effectively removed at or above the pseudo-critical temperature that corresponds to the boiling point at sub-critical pressure (385 °C at 25 MPa). Thus, steam-water separation is not necessary at the core exit and the turbines can be driven directly by the high temperature coolant leaving the core.On the other hand, the development of this reactor concept has to account for the high temperatures that are expected to be achieved as well as for the large axial density gradient within the core. Therefore additional research and development effort is expected to be devoted in particular to these areas.As an example of such a system operating at 25 MPa, the coolant enters the core at 280 °C. It exceeds the pseudo-critical temperature as it flows upward through the core and it exits the core at 508 °C directly into the steam turbines. The thermal efficiency of such a cycle is approximately 44% and is strongly affected by the core outlet temperature (see Fig. 1). The development effort carried out by Dobashi et al. (1998) has been primarily conceptual in nature and has pointed out the potential merit of the once-through concept. By using these results as a starting point, it is possible to reach a conclusion on whether or not the once-through supercritical-pressure LWR is economically and physically a viable solution that may help sustain the nuclear option. Because of the expected high efficiency, high-temperature, high-pressure and high power density we have named this concept high performance light water reactor (HPLWR).  相似文献   

6.
The High Performance Light Water Reactor (HPLWR) is the European version of the various supercritical water cooled reactor proposals. The paper presents the activity of KFKI-AEKI in the field of neutronic core design within the framework of the "HPLWR Phase 2" FP-6 and the Hungarian “NUKENERG” projects. As the coolant density along the axial direction shows remarkable change, coupled neutronic-thermohydraulic calculations are essential which take into account the heating of moderator in the special water rods of the assemblies. A parametrized diffusion cross section library was prepared for the HPLWR assembly with the MULTICELL neutronic transport code. The parametrized cross sections are used by the KARATE program system, which was verified by comparative Monte Carlo calculations. Preliminary loadings of the HPLWR core were assessed, which contain insulated assemblies with Gd burnable absorbers. The fuel assemblies have radial and axial enrichment zoning to reduce hot spots.  相似文献   

7.
A supercritical-pressure light water cooled and moderated reactor (Super LWR) with a single-pass flow scheme is developed for simplifying upper core structures. Both coolant in the fuel channels and the water rods flow upward and are mixed in the upper plenum. It eliminates the moderator guide/distribution tubes in the upper core that were used in the previous Super LWR design adopting two-pass coolant flow scheme. This core design adopts a four-batch fuel management scheme and an out–in fuel loading pattern. One hundred and twenty-one fuel assemblies with an active height of 3.7 m are included. The flow rate fraction for water rods is 3.5%, and the thermal insulator is used to keep the moderator temperature below pseudocritical temperature. The equilibrium core is analyzed by using neutronic and thermal-hydraulic coupled calculation. The results show that the maximum cladding surface temperature (MCST) is limited to 485 °C with the average outlet temperature of 400 °C. The inherent safety is fulfilled by the positive water density reactivity coefficient and sufficient shutdown margin. On the other hand, the investigation of average outlet coolant temperature varying with MCST is carried out to explore the maximum outlet temperature by employing current MCST criterion and single-pass core design. The average outlet temperature increases with the MCST, and it achieves 465 °C with the thermal efficiency of 43.1% at the MCST criterion of 650 °C. The structure inside the reactor pressure vessel is simplified as a pressurized water reactor.  相似文献   

8.
The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper.The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces.Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the usual 2 groups diffusion theory. Successively, with the usage of a developed pin-power reconstruction technique capable to account for the innovative fuel assembly design, sub-channel investigations of the individual fuel assemblies have been performed evaluating pin-wise clad temperatures. Obtained results will be discussed giving a detailed insight of the revolutionary HPLWR 3 pass core concept and understanding the physical reasons, which influence the local clad temperatures.The obtained results represent a new quality in core analyses, which takes into full consideration the coupling between neutronics and thermal-hydraulics as well as the spatial effects of the fuel assembly heterogeneity in determining the local pin-power and the associated maximum clad temperature.  相似文献   

9.
An important source of uncertainty in boiling water reactor physics is associated with the precise characterisation of the moderation properties of the coolant and by-pass regions, with significant impact on reactor physics parameters such as the lattice neutron multiplication, the neutron migration area and the pin-by-pin power distribution. In this paper, the effects of certain relevant void-fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of the type Westinghouse SVEA-96 using CASMO-4, HELIOS/PRESTO-2 and MCNP4C. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles, by means of an inner by-pass with a cruciform shape. The study has covered: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the consideration of a water film inside the sub-bundle walls, and (c) the impact of partly inserted absorber blades producing very different void fractions in different sub-bundles.  相似文献   

10.
This paper summarizes the analysis results of the thermal-hydraulic stability of a high-temperature reactor cooled and moderated by supercritical-pressure light water (SCLWR-H). A linear stability analysis code in the frequency domain was developed to study the thermal-hydraulic stability of SCLWR-H at constant supercritical pressure. The analysis method is based on linearization by perturbation of numerically-discretized one-dimensional single-channel single-phase conservation equations. The effect of water rods on stability is considered. The thermal-hydraulic stability of SCLWR-H for full-power and partial-power normal operations was investigated by frequency domain method. Our analysis reveals that though SCLWR-H has low coolant flow rate and large density change in the core, the thermal-hydraulic stability can be maintained both at normal operation and during power raising phase of constant pressure startup by applying an orifice pressure drop coefficient at the inlet of the fuel assemblies. A parametric study was also carried out to determine the parameters affecting the stability.  相似文献   

11.
Supercritical-pressure light water cooled fast reactor adopts the blanket fuel assemblies with depleted uranium fuel and zirconium hydride layer in the core for negative coolant void reactivity. Thermal neutrons are generated in the core of fast reactor. It is called “fast and thermal neutron coupled core”. The purpose of the present study is to examine the accuracy of assembly and core calculations including preparation of the macroscopic cross sections with the SRAC code system for “fast and thermal neutron coupled core” in comparison with the Monte Carlo codes, MVP and MVP-BURN. Accuracy of the neutron multiplication factor and coolant void reactivity calculation has been evaluated in four types of cores of different fractions of the blanket fuel assembly with zirconium hydride rods. The conventional analysis is based on the macroscopic cross sections which are prepared with infinite lattice. The conventional SRAC calculation underestimates the neuron multiplication factor for all types of cores. Other findings are that the conventional SRAC calculation overestimates coolant void reactivity for the cores without zirconium hydride rods, and underestimates coolant void reactivity for the core of all blanket fuel assemblies having zirconium hydride rods. To overcome these problems, it has been proposed that the macroscopic cross sections of seed fuel assembly are prepared with the model that a seed fuel assembly is surrounded by blanket fuel assemblies in order to take into account the effects of the surrounding fuel assemblies. Evaluations show that accuracy of the neutron multiplication factor by the SRAC calculation can be improved by the proposed method.  相似文献   

12.
The supercritical-water-cooled power reactor (SCPR) is expected to reduce power costs compared with those of current LWRs because of its high thermal efficiency and simple reactor system. The high thermal efficiency is obtained by supercritical pressure water cooling. The fuel cladding surface temperature increases locally due to a synergistic effect from the increased coolant temperature, the expanded flow deflection due to coolant density change and the decreased heat transfer coefficient, if the coolant flow distribution is non-uniform in the fuel assembly. Therefore, the SCPR fuel assembly is designed using a subchannel analysis code based on the SILFEED code for BWRs.

The SCPR fuel assembly has many square-shaped water rods. The fuel rods are arranged around these water rods. The fuel rod pitch and diameter are 11.2 mm and 10.2 mm, respectively. Since coolant flow distribution in the fuel assembly strongly depends on the gap width between the fuel rod and the water rod, the proper gap width is examined. Subchannel analysis shows that the coolant flow distribution becomes uniform when the gap width is 1.0 mm. The maximum fuel cladding surface temperature is lower than 600°C and the temperature margin of the fuel cladding is increased in the design.  相似文献   

13.
The study evaluates potential weaknesses and possible improvements for integral type small modular pressurized water reactor designs. By taking International Reactor Innovative and Secure (IRIS) as the reference design and keeping the power output as the same, a new fuel and reactor design were proposed. The proposed design relocates the primary coolant pumps and the pressurizer outside the reactor pressure vessel (RPV). Three recirculation lines and jet pumps/centrifugal pumps are introduced to provide the coolant circulation similar to Boiling Water Reactor designs. The pressurizer component is expected to be similar to the AP600 design. It is located at one of the recirculation lines. The new fuel assembly adopts 264 solid cylindrical fuel pins with 10 mm diameter and 2.3 m height, arranged at a hexagonal tight lattice configuration. Large water rods are introduced to preserve the moderating power and to accommodate finger type control rods. The resulting fuel can operate with 104.5 kW/l power density while having substantially higher margin for boiling crisis compared to typical large PWRs. Full core neutronic analysis shows that 24-month cycle length and 50 MWd/kg burnup is achievable with a two-batch refueling scheme. Furthermore, the fuel behavior study shows that the new fuel with M5 type Zircaloy cladding show fairly acceptable steady state performance. A preliminary Loss of Coolant analysis shows that the new design could be advantageous over IRIS due to its low ratio of the water inventory below the top of the active fuel to total RPV water inventory. The proposed reactor pressure vessel height and the containment volume are 30% lower than the reference IRIS design.  相似文献   

14.
提出超临界水混合堆快谱区多层燃料组件设计方案。用MCNP与STAFAS程序对多层燃料组件进行初步的中子物理与热工水力性能分析,同时对组件结构参数(栅距与棒径比P/D)进行敏感性研究。结果表明:快谱多层燃料组件设计不仅能够实现核燃料的增殖,且可获得较大的负冷却剂温度反应性系数与燃料温度反应性系数;减小P/D均可提高燃料的转换比,但较小P/D会导致核热点因子增大。适当调整组件裂变区燃料富集度可有效改善组件裂变区轴向功率不均匀性,降低核热点因子。  相似文献   

15.
The HPLWR (high performance light water reactor) is the European concept design for a SCWR (supercritical water reactor). This unique reactor design consists of a three pass core with intermediate mixing plena. As the supercritical water passes through the core, it experiences a significant density reduction. This large change in density could be used as the driving force for natural circulation of the coolant, adding an inherent safety feature to this concept design. The idea of natural circulation has been explored in the past for boiling water reactors (BWR). From those studies, it is known that the different feedback mechanisms can trigger flow instabilities. These can be purely thermo-hydraulic (driven by the friction – mass flow rate or gravity – mass flow rate feedback of the system), or they can be coupled thermo-hydraulic–neutronic (driven by the coupling between friction, mass flow rate and power production). The goal of this study is to explore the stability of a natural circulation HPLWR considering the thermo-hydraulic–neutronic feedback. This was done through a unique experimental facility, DeLight, which is a scaled model of the HPLWR using Freon R23 as a scaling fluid. An artificial neutronic feedback was incorporated into the system based on the average measured density. To model the heat transfer dynamics in the rods, a simple first order model was used with a fixed time constant of 6 s. The results include the measurements of the varying decay ratio (DR) and frequency over a wide range of operating conditions. A clear instability zone was found within the stability plane, which seems to be similar to that of a BWR. Experimental data on the stability of a supercritical loop is rare in open literature, and these data could serve as an important benchmark tool for existing codes and models.  相似文献   

16.
A novel concept of a pressurized water reactor with a primary loop cooled with supercritical water is introduced and analyzed in this work. A steam cycle analysis has been performed to illustrate the advantages of such a nuclear power plant with respect to specific power and thermal efficiency. Moreover, a reactor pressure vessel concept including its internals and a suitable core and fuel assembly design are presented overcoming the problems, which arise due to the high heat up of the coolant and the density change involved with it. The core power and coolant density distributions are predicted with coupled neutronic and thermal-hydraulic analyses. The method features the definition of inlet orifices for coolant mass flow adjustment within the core as well as an additional tool for the interpolation of local pin power data. The latter one has been used for a successive sub-channel analysis of the hottest fuel assembly of the core, which provides a more detailed spatial resolution and thus predicts peak cladding temperatures, the maximum linear pin power of fuel pins, and maximum fuel temperatures. It can be shown that maximum temperatures of claddings and fuel are well below the material limits. Thanks to an average core exit temperature below the pseudo-critical temperature, the core concept leaves enough margin for additional uncertainties and allowances for operation.  相似文献   

17.
表面涂有一薄层硼化锆的一体化燃料可燃吸收体(IFBA)被用作轻水堆UO2燃料组件的反应性控制。法国AREVA公司开发的SCIENCE程序包具有模拟IFBA组件的能力,但其模拟精度需经标定。本文利用APOLLO2-F程序建立IFBA组件模型和不含IFBA组件模型,研究了组件的无限增殖因数k∞及IFBA价值,并与西屋公司结果进行比较。分析了燃料和包壳温度的处理方法以及数据库的差异对结果的影响。利用硼化锆密度修正因子评估IFBA价值偏差对堆芯参数和功率分布等的影响。结果表明:SCIENCE计算的k∞及IFBA价值与西屋公司的结果符合较好,低燃耗区SCIENCE计算的价值偏小2%。装载8个104根IFBA棒组件的堆芯,组件相对功率最大偏差约为1%;硼浓度、功率峰因子FQ和焓升因子FΔH的变化均不到0.1%,可忽略。先导组件采用28根或更少的IFBA棒时,可直接采用SCIENCE程序进行计算。  相似文献   

18.
We have examined the effects on core characteristics of using two different types of Pu-based metallic alloy fuels in the gallium-cooled fast reactor core. In the proposed concept, the liquid metal fast nuclear reactor uses metallic fuel in the liquid phase and gallium coolant at high temperature (inlet 1700K, outlet 1900K). The liquid fuel is continuously supplied to the reactor during operation at full reactor power. The reactor power is controlled by rotational control drums with absorber material. The aim was to evaluate reactor core neutronics and safety characteristics demonstrating a feasibility of the reactor system. Although gallium has large absorption cross section in the high neutron energy region, we can design the core with rather good neutronics performances. The large negative reactivity feedback induced by the thermal expansion of liquid metallic fuel ensures the core's inherent safety against the unprotected loss-of-flow transient.  相似文献   

19.
This paper presents the neutronic design of a liquid salt cooled fast reactor with flexible conversion ratio. The main objective of the design is to accommodate interchangeably within the same reactor core alternative transuranic actinides management strategies ranging from pure burning to self-sustainable breeding. Two, the most limiting, core design options with unity and zero conversion ratios are described. Ternary, NaCl-KCl-MgCl2 salt was chosen as a coolant after a rigorous screening process, due to a combination of favourable neutronic and heat transport properties. Large positive coolant temperature reactivity coefficient was identified as the most significant design challenge. A wide range of strategies aiming at the reduction of the coolant temperature coefficient to assure self-controllability of the core in the most limiting unprotected accidents were explored. However, none of the strategies resulted in sufficient reduction of the coolant temperature coefficient without significantly compromising the core performance characteristics such as power density or cycle length. Therefore, reactivity control devices known as lithium thermal expansion modules were employed instead. This allowed achieving all the design goals for both zero and unity conversion ratio cores. The neutronic feasibility of both designs was demonstrated through calculation of reactivity control and fuel loading requirements, fluence limits, power peaking factors, and reactivity feedback coefficients.  相似文献   

20.
In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号