首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in‐situ polymerization process prepared a series of melamine formaldehyde (MF) microcapsules containing phase change material (PCM) as core material. The phase change temperature of this PCM was 24°C and its phase transition heat was 225.5 J/g. The microencapsulated phase change materials (MicroPCMs) were bedded in indoor‐wall materials to store and release heat energy, which would economize heat energy and make the in‐door condition comfortable. We investigated the structural formation mechanism by microscope and scanning electron microscopy (SEM). The superficial morphology measurements indicated the optimal shell material dropping rate 0.5 mL min?1, double‐shell, and temperature elevating speed 2°C/10 min. The results obtained in the present investigation were reasonably understood on the basis of getting determinate rigidity and compacted shell. Also, the observed results were used to control the mass of shell material to get desired thickness of shell. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2006  相似文献   

2.
Based on the industrialized graphene (GN) product, a series of graphene/urea‐formaldehyde nanocomposites were synthesized via in situ polymerization by incorporation of silicon coupling agent with terminal amino groups (SA) as the compatibilizer. The results showed that addition of SA coupling agent led to much more efficient grafting of UF molecules on the GN surface with high layer thickness by formation of hydrogen bonding, and thus complete exfoliation and uniform dispersion of GN were achieved for the composites. Compared with neat UF, the addition of 1.0 wt% GN resulted in a roughly 25% increase in tensile strength and 12% increase in impact strength; meanwhile the impact fracture surfaces of the composite showed obvious ductile fracture characteristics, indicating the reinforcing and toughening effect of GN on the UF matrix. With increasing GN content, the storage modulus, glass transition temperature and crosslinking density of UF increased, while the tan δmax decreased, suggesting that a double crosslinking network structure with GN centered crosslinking point and chemical crosslinking point of UF molecular chains formed, leading to improvement in the stiffness of the composites. The present work showed promising potential for developing high performance UF resin on an industrial scale. © 2017 Society of Chemical Industry  相似文献   

3.
Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Samples of Norway spruce wood were impregnated with a water‐soluble melamine formaldehyde resin by using short‐term vacuum treatment and long‐term immersion, respectively. By means of Fourier transform infrared (FTIR) spectroscopy and UV microspectrophotometry, it was shown that only diffusion during long‐term immersion leads to sufficient penetration of melamine resin into the wood structure, the flow of liquids in Norway spruce wood during vacuum treatment being greatly hindered by aspirated pits. After an immersion in aqueous melamine resin solution for 3 days, the resin had penetrated to a depth > 4 mm, which, after polymerization of the resin, resulted in an improvement of hardness comparable to the hardwood beech. A finite element model describing the effect of increasing depth of modification on hardness demonstrated that under the test conditions chosen for this study, a minimum impregnation depth of 2 mm is necessary to achieve an optimum increase in hardness. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1900–1907, 2004  相似文献   

5.
Novel microcapsules were prepared from colloidal core–shell particles by acid dissolution of the organic core. Weakly crosslinked, monodisperse and spherical melamine‐formaldehyde polycondensate particles (diameter ~ 1 μm) were synthesized as core template and coated with multilayers of an anionic polyelectrolyte via layer‐by‐layer deposition technique. As polyelectrolytes, an anionic naphthalenesulfonate formaldehyde polycondensate that is a common concrete superplasticizer and thus industrially available, and cationic poly(allylamine hydrochloride) were used. Core removal was achieved by soaking the core–shell particles in aqueous hydrochloric acid at pH 1.6, resulting in hollow microcapsules consisting of the polyelectrolytes. Characterization of the template, the core–shell particles, and the microcapsules plus tracking of the layer‐by‐layer polyelectrolyte deposition was performed by means of zeta potential measurement and scanning electron microscopy. The microcapsules might be useful as microcontainers for cement additives. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Yan Shi  Ning Wang  Li Liu  Yuan Liu 《火与材料》2018,42(2):183-189
Melamine‐formaldehyde foam possesses intrinsic flame retardance; however, relative poor thermal stability and a certain amount of heat release rate restrict its applications in heated environment to a degree. In the present research, sol‐gel method has been adopted to precipitate nano‐SiO2 particles on the surface of the melamine‐formaldehyde foam's fibers to construct a protective inorganic gel layer. Taking advantages of the shielding effects of the gel layer, the thermal‐oxygen degradation of the foam can be greatly retarded during heating; hence, the thermal stability is remarkably improved, and the flame retardance is further enhanced. In addition, introducing a small amount of membrane‐forming agent in the sol‐gel system can make the depositional nano‐SiO2 particles well adhered to avoid dusting.  相似文献   

7.
In previous research, it was found that melamine‐formaldehyde resin can be used as a binder for a hydroxy‐functional organophosphorus flame retarding agent (FR) on cotton. The role that trimethylol melamine (TMM) plays in this flame retarding system was studied. When TMM is applied to cotton, it forms crosslinks between cellulose molecules. When TMM is applied to cotton in the presence of FR, it reacts with FR to form a crosslinked polymeric network in addition to reacting with cotton. The formation of the crosslinked network improves the laundering durability of FR and also increases the fabric stiffness. The number of crosslinks among cotton cellulose formed by TMM decreases as the FR concentration in the system is increased. TMM also functions as a nitrogen provider to enhance the flame retarding performance of FR due to phosphorus–nitrogen synergism. Therefore, the amount of TMM used in a FR/TMM formula plays the most critical role in determining the effectiveness of this flame retarding system. The finish bath pH also plays a significant role in influencing the performance of the flame retarding system on cotton. The optimum pH was found to be around 4. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This work deals with development, characterization, and performance of an electro‐conductive fabric prepared by in situ polymerization of thiophene onto polyester. An attempt was made to optimize the polymerization process to achieve highest level of electro‐conductivity of this fabric. The essential characteristics of this electro‐conductive fabric were examined and its electromagnetic shielding performance was evaluated. Polythiophene powder was also synthesized and analyzed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Fibers prepared by melt spinning process from the PP (polypropylene)/organoclay nanocomposite were characterized in details with the aid of SEM, FTIR, XRD, DSC, and mechanical measurements. The results suggested that the lower content of organoclay (0.1%) added to the PP matrix increased the crystallinity and mechanical property (tensile strength) of the PP/organoclay nanocomposite fiber. With increasing the content of organoclay (≥ 0.3%), the crystallinity and the tensile strength both a little decreased, and the fiber containing organoclay exhibited multi‐peaks at the same draw ratio during the heating process. Furthermore, the degree of orientation of the fiber increased a little with lower content of organoclay (0.1%) introduction to PP during the infrared dichroism measurement. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
In the present contribution, investigations on the chemical modification of thermosetting melamine formaldehyde resins by natural polyol compounds are presented. As representative agents soluble starch, sucrose, and glycerol were chosen to cover three different classes of polyols. The major aim was to use substances produced from natural bio‐renewable feedstock that are available in large quantities and may serve as environmentally innocuous and bio‐renewable substitutes for petro‐chemically derived and potentially hazardous materials. Different reaction conditions lead to resins with varying technical performance. For soluble starch no reaction conditions could be found that allow the adoption of this substitute for the laminate industry due to insufficient technological performance. Sucrose and glycerol on the other hand yielded impregnation resins with suitable performance. Chemical linkage of the modifying agent into the chain propagation by poly‐condensation however, was only found with glycerol. The covalent incorporation of glycerol in the network was observed with addition of glycerol at different stages during synthesis. The technological performance of the various modified thermosetting resins was assessed by determining flow viscosity, molar mass distribution, the storage stability, and in a second step laminating impregnated paper to particle boards and testing the resulting surfaces according to standardized quality tests. Spectroscopic evidence of chemical incorporation of glycerol was found by applying by 1H, 13C, 1H/13C HSQC, 1H/13C HMBC, and 1H DOSY methods. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
In this study, CI Solvent Yellow 43 was encapsulated by melamine‐formaldehyde (MF) resin via in situ polymerisation to prepare the core‐shell structured fluorescent pigment. Fourier Transform‐infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis and differential scanning calorimetry were used to characterise the encapsulated CI Solvent Yellow 43, indicating that MF successfully encapsulated CI Solvent Yellow 43 and that a core‐shell structure was formed. The prepared MF encapsulated fluorescent dye dispersion was also applied to flat screen printing of cotton fabrics, and the colour properties and fastness properties (washing and rubbing fastness) of printed fabrics were studied. The results showed that the encapsulated CI Solvent Yellow 43 printed cotton fabric exhibited a higher chroma and fluorescence intensity than that printed with unencapsulated CI Solvent Yellow 43. Moreover, the washing and rubbing fastness of the encapsulated CI Solvent Yellow 43 printed fabric was improved.  相似文献   

12.
This work deals with preparation, characterization, and performance of electro‐conductive yarns prepared by in situ chemical and electrochemical polymerization of pyrrole. Box‐Behnken design in conjunction with response surface analysis has been used to study the electrochemical polymerization process. The effect of electrochemical process parameters on the electrical resistivity has been reported. Further, the electrical and electromechanical behaviour of the electro‐conductive yarns thus produced has also been reported. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
We have developed flame‐retardant polyurethanes (FRPUs) and polyurethane (PU) nanocomposites via in situ polymerization. Three series of thermoplastic elastomeric PUs were synthesized to investigate the effect of incorporating 3‐chloro‐1,2‐propanediol (CPD) and nanoclay on mechanical, thermal properties, and also resistance to burning. PU soft segments were based on poly(propylene glycol). Hard segments were based on either CPD or 1,4‐buthane diol (BDO) in combination with methyl phenyl di‐isocyanate named PU or FRPU, respectively. In the third series, CPD was used as chain extender also nanoclay (1% wt) and incorporated and named as flame‐retardant polyurethane nanocomposites (FRPUN). Mechanical properties and LOI of PUs and nanocomposites have been evaluated. Results showed that increasing the hard segment (chlorine content) leads to the increase in flame retardancy and burning time. Addition of nanoclay to CPD‐containing PUs leads to obtain self‐extinguish PUs using lower CPD contents, higher Young's modulus, and strength without any noticeable decrease in elongation at break. Investigation of the TGA results showed that copresence of nanoclay and chlorine structure in the PU backbone can change thermal degradation pattern and improve nanocomposite thermal stability. X‐ray diffraction and transmission electron microscopy studies confirmed that exfoliation and intercalation have been well done. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Encapsulation of essential oils by in situ polymerization is commonly used to contain the oil and thus ensure its controlled release. Melamine resin formaldehyde is one of the most widely used shell materials due to its thermal and chemical stability. One of the factors that influences the properties of the capsules is the molar relationship between monomers. The effect of formaldehyde ? melamine (F/M) molar ratios 3, 4 and 6 on the nanoencapsulation, morphology and properties of nanocapsules was investigated. The morphology and particle size were investigated by the scanning electron microscopy and atomic force microscopy techniques. The composition of the formaldehyde ? melamine resins was determined by Fourier transform infrared spectroscopy, and the thermal stability of the nanocapsules was analysed by differential scanning calorimetry and thermogravimetric analysis. Increasing the formaldehyde content reduced the nanocapsules' chemical stability. The capsule sizes obtained were nanometric at all melamine ? formaldehyde ratios studied, with a non‐significant variation in particle size and shape. © 2017 Society of Chemical Industry  相似文献   

15.
In this article, polyaniline (PANI)/cotton composite were prepared by in situ polymerization on the grafted cotton. First, acrylamide was grafted onto cotton cellulose using a radical graft polymerization process and some influencing factors were studied. Then polyaniline/cotton conductive composite fabrics were prepared by chemical in situ polymerization on the grafted cotton. The influences of the concentration of ammonium persulfate, aniline, hydrochloric acid, and the reaction time to the conductivity and K/S of composite fabric were studied. By contrasting, graft brought on an improvement of about one order of magnitude to the conductivity of composite fabric. The strength, TG, FTIR‐ATR, and SEM of prepared fabric were measured. The thermal stability and tear strength of composite fabric reduced, whereas PANI exhibited a rough but uniform, coherent PANI coating on surface of cotton fiber. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
For the preparation of high‐quality polymeric carbon nanocomposites, it is required that carbon nanotubes are fully compatible with matrix polymers. For this purpose, amino‐functionalized multiple‐walled carbon nanotubes (a‐MWNTs) were synthesized. The a‐MWNTs/polyimide nanocomposite films were prepared through in situ polymerization. According to the spectroscopic characterizations, the a‐MWNTs were homogeneously dispersed in the nanocomposite films as the acid‐functionalized MWNTs. The mechanical properties of the polyimide composite were also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Effects of resin formulation, catalyst, and curing temperature were studied for particleboard binder‐type urea‐formaldehyde (UF) and 6 ~ 12% melamine‐modified urea‐melamine‐formaldehyde (UMF) resins using the dynamic mechanical analysis method at 125 ~ 160°C. In general, the UF and UMF resins gelled and, after a relatively long low modulus period, rapidly vitrified. The gel times shortened as the catalyst level and resin mix time increased. The cure slope of the vitrification stage decreased as the catalyst mix time increased, perhaps because of the deleterious effects of polymer advancements incurred before curing. For UMF resins, the higher extent of polymerization effected for UF base resin in resin synthesis increased the cure slope of vitrification. The cure times taken to reach the vitrification were longer for UMF resins than UF resins and increased with increased melamine levels. The thermal stability and rigidity of cured UMF resins were higher than those of UF resins and also higher for resins with higher melamine levels, to indicate the possibility of bonding particleboard with improved bond strength and lower formaldehyde emission. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 377–389, 2005  相似文献   

18.
Three commercially available silane, titanate and aluminate based coupling agents were used to pretreat nano‐SiO2 for the preparation of nylon‐6/nano–SiO2 composites via in situ polymerization. The interphases formed in different composite systems and their influence on material properties were investigated. Results indicated that the interfacial interactions differed between composite systems, whereas rigidity and toughness of composites were all improved by addition of pretreated silicas at an optimal content of 4.3 wt%. The presence of pretreated silicas did not have a distinct influence in the non‐isothermal crystallization behaviour of the nylon matrix. The composites containing pretreated silicas had slightly higher dynamic viscosities and superior storage moduli at high frequency, compared with neat nylon‐6. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Poly(methyl methacrylate) (PMMA)/Titanium oxide (TiO2) composite particles were prepared via in‐situ emulsion polymerization of MMA in the presence of TiO2 particles. Before polymerization, the TiO2 particles was modified by the silane coupling agent, which is crucial to ensure that PMMA reacts with TiO2 via covalent bond bindings. The structure of the obtained PMMA/TiO2 composite particles was characterized using Fourier transform infrared spectra (FTIR) and thermogravimetric analysis (TGA). The results indicate that there are covalent bond bindings between PMMA macromolecules and TiO2 particles. Based on these facts, several factors affecting the resulting PMMA/TiO2 composite system, such as the type of coupling agents, the mass ratio of the MMA to the modified TiO2, the emulsifier concentration, and the initiator concentration, etc., were examined by the measurement of conversion of monomers, the gel content of polymers, the percentage of grafting, and the grafting efficiency, using gravity method or TGA method. As a result, the optimized recipe was achieved, and the percentage of grafting and the grafting efficiency could reach 216.86 and 96.64%, respectively. In addition, the obtained PMMA/TiO2 composite particles were found to a stable colloidal dispersion in good solvent for PMMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4056–4063, 2006  相似文献   

20.
Toluene 2, 4‐diisocyanate (TDI) functionalized multiwalled carbon nanotubes (MWNTs‐NCO) were used to prepare monomer casting polyamide 6 (MCPA6)/MWNTs nanocomposites via in situ anionic ring‐opening polymerization (AROP). Isocyanate groups of MWNTs‐NCO could serve as AROP activators of ?‐caprolactam (CL) in the in situ polymerization. Fourier transform infrared (FTIR) showed that a graft copolymer of PA6 and MWNTs was formed in the in situ polymerization. MWNTs‐PA6 covalent bonds of the graft copolymer constituted a strong type of interfacial interaction in the nanocomposites and increased the compatibility of MWNTs and MCPA6 matrix. The nanocomposites were characterized for the morphology, mechanical, crystallization, and thermal properties through field emission transmission electron microscopy (FETEM), tensile testing, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). FETEM analysis showed that MWNTs were homogeneously dispersed in MCPA6 matrix. The initial tensile strengths and tensile modulus of the nanocomposite with 1.5 wt % loading of MWNTs were enhanced by about 16 and 13%, respectively, compared with the corresponding values for neat MCPA6. DSC analysis indicated that the crystallization temperature of the nanocomposites was increased by 8°C by adding 1.5 wt % MWNTs compared with pure MCPA6. Besides, it was found that the thermal stability of MCPA6 was improved by the addition of the MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号