首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 单桩静载试验和基础沉降实测资料表明:在设计工作荷载下超长单桩的桩顶沉降主要来自桩身压缩,且在最大加载条件下超长桩表现为端承摩擦桩性状。超长单桩侧摩阻力由上部土层到下部土层依次发挥,砂质粉土侧摩阻力充分发挥所需的桩土极限相对位移为14~18 mm,粉质黏土侧摩阻力充分发挥所需的桩土极限位移为17~19 mm,当桩土相对位移大于该极限位移后,桩侧土层会出现侧摩阻力软化现象。群桩基础的沉降随施工荷载水平的增加而增大。荷载较小(第5层以下)时,大楼沉降较小且沉降均匀;当荷载达到一定值(第30层以上)时,核心筒处沉降大于大楼周边沉降。大楼竣工时核心筒与周边沉降差较小,大楼整体变形协调。群桩效应沉降比随着荷载水平(施工层数)的增大先增大后减小。  相似文献   

2.
软土地区大吨位超长试桩试验设计与分析   总被引:1,自引:0,他引:1  
温州350 m超高层中超长桩加载2800 t的试桩静载试验设计与分析表明:在地表土质承载力较低场地进行大吨位堆载试验时,可选择桩梁式堆载支墩–反力架装置来完成试验。对超长桩来说,在最大加载条件下,实测桩端阻力仅为桩顶荷载的25%左右,超长桩表现为端承摩擦桩性状。在使用荷载下,桩顶沉降的90%以上来自桩身压缩,在进行超长桩设计时,要充分考虑桩身质量对试桩沉降的影响。同时,桩底沉渣清除的干净与否,也直接影响超长桩的沉降。超长桩桩侧上部土层摩阻力具有不同程度的软化现象,而中下部土层侧摩阻力具有较弱的强化效应,因此在超长桩承载力计算时,不同深度土层的桩侧阻力和桩端阻力都应乘以相应不同的修正系数。试验结果显示淤泥土、淤泥质黏土、淤泥夹粉砂土中极限侧阻充分发挥所需的桩土相对位移阀值分别约为5~7 mm、6~8 mm和8~10 mm。  相似文献   

3.
针对超长群桩使用较多而理论研究较少的现状,进行了大型的室内超长群桩模型试验。通过对黏性土中桩距为6d的超长钻孔灌注群桩的室内模型试验和实测数据分析,研究了超长群桩的荷载传递机理和承载力特性。得到了在竖向荷载作用下超长群桩的荷载与沉降关系曲线,桩身压缩量占桩顶沉降的百分比、桩身轴力分布曲线以及桩侧摩阻力分布曲线。研究结果表明:超长群桩属于非刚性摩擦桩,桩顶沉降主要由桩身压缩量引起;极限荷载作用下,桩端阻力接近为零,桩身中下部的侧摩阻力没有充分发挥。这些结论为超长群桩的理论研究、工程设计与施工提供有益参考。  相似文献   

4.
超长大直径钻孔灌注桩抗拔与抗压对比试验研究   总被引:1,自引:0,他引:1  
通过五根直径相同、桩长相近、位于同一场地的超长大直径钻孔灌注桩在拔力与压力作用下的对比试验,分析抗拔桩与抗压桩在变形性状和荷载传递机理的相同性和差异性。试验结果表明,对于超长大直径钻孔灌注桩,桩侧摩阻力总是上部土体首先发挥,而后逐渐传递给下部土体,桩侧摩阻力均存在强化效应和退化效应,桩沉降(上拔)以桩身压缩(伸长)为主;抗拔桩桩顶Q-s曲线呈陡降型,抗压桩桩顶Qs-曲线呈缓变型,桩承受竖向上拔力所表现出来的刚度明显小于承受竖向压力所表现出来的刚度。  相似文献   

5.
对某跨海桥梁近海软土地基的2根大直径PHC桩进行静载试验,并通过预埋的应变式钢筋计测试桩身轴力分布,结果表明桩侧土层刚度越大,桩顶荷载传递给该土层承担的比例也越大,桩身轴力减小也越显著,反之则桩顶荷载更多向下部土层传递;桩身上部土层侧阻力先于下部土层发挥作用,且较大的荷载将使上部桩土发生较大相对位移,从而导致淤泥层侧摩阻力发生软化现象;尽管大直径PHC桩桩身刚度较大,但在设计工作荷载下桩顶实测沉降仍主要由桩身压缩引起。  相似文献   

6.
为了研究湖州软土地区钻孔灌注桩侧摩阻力的发挥,采用光纤监测技术获取试桩在现场载荷试验中桩身轴力、桩侧摩阻力及桩顶沉降位移。通过对监测数据分析,结果表明:试验荷载下试桩为摩擦桩,摩擦桩的承载力提高主要由桩侧摩阻力决定,且随着桩顶荷载的增加各土层的侧摩阻力相应增加;上部的黏质粉土层侧摩阻力随着加载等级的增加相应增加并趋于极限,其他土层侧摩阻力也逐渐增加,其中桩承载力主要由中部粉质黏土层的侧摩阻力提供;在桩顶荷载较小的情况下,桩顶荷载由上部的土层侧摩阻力承担,轴力未传递到下部土层,下部土层对桩身侧摩阻力无发挥,桩端阻力为零。  相似文献   

7.
通过模型试验研究了竖向上拔荷载作用下长径比为30时斜桩的承载变形和荷载传递性状,并与同条件直桩的性状进行了比较。结果表明,在相等桩顶竖向上拔荷载作用下,斜桩竖向上拔量大于直桩竖向上拔量;斜桩桩顶竖向上拔量随桩身倾角的增大而增加。在桩顶竖向上拔荷载作用下,抗拔直桩与抗拔斜桩桩身轴力上拔量分布具有一定的相似性。斜桩桩身弯矩主要分布在1/2桩长范围内,且随着桩身倾角的增大而增大;而最大弯矩所处的深度与桩身倾角无关。抗拔直桩与抗拔斜桩的平均侧摩阻力都是从上部开始发挥并往下传递;随着上拔荷载的增加,桩身上部平均侧摩阻力的数值变化很小,而桩身中下部平均侧摩阻力迅速增长。抗拔直桩与抗拔斜桩端部平均侧摩阻力都表现出弱化现象。  相似文献   

8.
针对高速列车通过小跨度桥梁时列车活载对桥桩的影响分析来获得动力加载参数,进而对位于软粘土地层中的钻孔灌注桩进行了轴向循环荷载长期作用下的动力试验,测试和研究了循环荷载长期作用下桩的动位移幅值、桩顶沉降、桩身轴力、桩侧动摩阻力和单桩极限承载力等参数的发挥和变化情况。试验结果表明:列车循环荷载长期作用下,灌注桩的桩身轴力发生了局部调整,砂性土层的桩侧摩阻力具有增强效应,淤泥质粘性土的桩侧摩阻力具有退化效应;列车循环荷载对软土地区单桩的承载能力和桩基的工后沉降影响甚微,但会使单桩竖向刚度降低。  相似文献   

9.
通过模型试验研究了竖向上拔荷载作用下长径比为30时斜桩的承载变形和荷载传递性状,并与同条件直桩的性状进行了比较。结果表明,在相等桩顶竖向上拔荷载作用下,斜桩竖向上拔量大于直桩竖向上拔量;斜桩桩顶竖向上拔量随桩身倾角的增大而增加。在桩顶竖向上拔荷载作用下,抗拔直桩与抗拔斜桩桩身轴力上拔量分布具有一定的相似性。斜桩桩身弯矩主要分布在1/2桩长范围内,且随着桩身倾角的增大而增大;而最大弯矩所处的深度与桩身倾角无关。抗拔直桩与抗拔斜桩的平均侧摩阻力都是从上部开始发挥并往下传递;随着上拔荷载的增加,桩身上部平均侧摩阻力的数值变化很小,而桩身中下部平均侧摩阻力迅速增长。抗拔直桩与抗拔斜桩端部平均侧摩阻力都表现出弱化现象。  相似文献   

10.
通过模型试验研究了竖向荷载作用下长径比为25时,不同倾角的斜桩的承载变形及荷载传递性状,并与竖向荷载作用下的直桩的承载变形及荷载传递性状进行了比较。试验结果表明:斜桩的桩顶沉降大于直桩的桩顶沉降,斜桩桩身倾角越大,斜桩的桩顶沉降超过直桩的桩顶沉降越多;斜桩桩身轴力均小于直桩桩身轴力,斜桩桩身倾角越大,桩身轴力沿深度衰减得越快;斜桩桩身弯矩主要发生在桩体上部1/2桩长范围内,且随着桩身倾角的增大而增大,桩身最大弯矩出现的位置与桩身倾角无关。斜桩桩侧平均摩阻力的分布与桩身倾角密切相关;斜桩最大桩侧平均摩阻力出现在桩顶下约1/5桩长处。  相似文献   

11.
高荷载水平下超长桩承载性状试验研究   总被引:10,自引:1,他引:10  
通过对深厚软土地基中超长桩静荷载试验和桩身应力测试结果的分析,研究了高荷载水平下超长桩的荷载传递机理和承载性状。研究表明,超长桩在高荷载水平下表现为端承摩擦桩,桩侧摩阻力和桩端摩阻力的发挥是异步发挥且互相耦合。桩底沉渣会同时影响桩侧摩阻力和桩端摩阻力的发挥,在高荷载水平下,超长桩存在清渣干净的要求。在高荷载水平下,超长桩会产生桩侧土摩阻力软化,出现软化的桩土相对位移临界值与桩顶沉降有较好的相关性,表现为桩径D的正比例函数,软土中当桩顶位移为(0.01~0.02)D时,桩土将发生滑移而使桩侧摩阻力软化。同时,基于其承载机理对超长桩的设计应用作了进一步的探讨,得到的结论对超长桩的理论研究和工程设计具有重要的指导意义。  相似文献   

12.
上海中心大厦大直径超长灌注桩现场试验研究   总被引:1,自引:0,他引:1  
中国在建第一高楼上海中心大厦( 632 m )采用了直径为 1 m 、桩端埋深 88 m 的大直径超长灌注桩,有别于金茂大厦( 420 m )、上海环球金融中心( 492 m )另两栋超高层建筑所采用的钢管桩。通过现场试桩验证成桩可行性及承载力取值,试桩载荷试验加载至极限,采用分布式光纤量测桩身应变,同时为研究上海软土地区大直径超长灌注桩承载特性及荷载传递机理提供了有价值的数据。试验结果表明:试桩破坏前,Q – s 曲线近似为线性,破坏时,桩体发生刺入变形; 桩侧桩端联合后注浆桩与桩端后注浆桩在侧摩阻力分布及发挥性状方面存在显著差异; 黏性土中桩侧摩阻力充分发挥所需桩土相对位移小于 5 mm ,砂性土中小于 10 mm ;桩土相对位移超过极限位移后,埋深较浅的黏性土中由于桩土相对位移大出现明显的软化现象;与规范值相比,有效桩长范围内浅部土层中桩侧摩阻力小于规范取值下限,深部土层中桩侧摩阻力达规范取值上限的 2 倍以上;试桩端阻比较小,表现出摩擦型桩特性;桩身压缩占桩顶沉降 95% 左右,桩顶沉降主要由桩身压缩产生。试桩试验为上海软土地区 600 m 超高层建筑首次采用灌注桩提供指导和技术支持。  相似文献   

13.
本文结合工程实例,展开了BOTDR光纤传感技术在超长灌注桩检测中的应用研究,分析了其沉降特性和荷载传递机理。试验结果表明:超长灌注桩的荷载一沉降曲线为缓变型,没有明显的沉降拐点;桩身竖向荷载主要由桩侧摩阻力承担,桩端承担比例很小;超长桩的侧摩阻力在桩身中部发挥最佳,桩身下部发挥很小,在超长桩设计中应考虑有效桩长来确定桩的长度。  相似文献   

14.
通过对宁波绕城高速公路东段软土地区26根超长桩静载测试数据的分析,研究了持力层为亚粘土、亚砂土的软土中超长桩的承载特性和荷载传递机理,得到了桩端阻力、桩侧摩阻力发挥规律和桩身压缩变形规律.结果表明,超长桩的Q-s曲线大多为缓变型;在极限状态下,端阻力一般占极限荷载的20%左右,桩身压缩量一般占桩顶总位移的30%~50%...  相似文献   

15.
根据上海地区某工程超长灌注桩的现场静载荷试验和桩身应力测试结果,分析该地区超长灌注桩的竖向承载特性。实测结果表明,两根试桩的桩端阻力与桩顶荷载之比约为10%,超长桩的竖向承载力主要由桩侧摩阻力来提供的。通过对桩身轴力和侧阻分布曲线的分析,发现超长灌注桩侧摩阻力的发挥与桩顶荷载、桩周土性质等因素密切相关,而成孔质量在满足规范要求后对土体侧摩阻力发挥影响并不显著。根据桩身侧阻分布特点,建议在工程设计时应充分利用深层的密实粉砂层来提高桩身竖向承载力,研究结论可供同类地区的超长桩设计和理论分析提供参考。  相似文献   

16.
采用钢绞线作为锚桩的抗拉构件具有安装方便,易于控制各钢绞线均匀受力,抗拉强度大等优点,且可节约安装工期,节省材料费。静载试验得到的Q-s曲线呈缓变形加载到最大加载荷载时,沉降20.42 mm,试桩未破坏,卸载后沉降为18.60 mm;桩身轴力从桩顶到桩底逐渐减小,土体的摩阻力可自上而下发挥,在工作荷载12 000 kN时,端阻力仅81.26 kN,为桩顶荷载的0.6%,荷载几乎全部由侧摩阻力承担。  相似文献   

17.
通过深厚软土地区的某个超高层建筑大直径钻孔桩静载试验,实测每级荷载作用下的桩身应力、桩顶沉降量及桩端沉降量等参数,分析了软土中持力层为卵石的超长桩的承载性状和荷载传递机理,结果表明:桩侧摩阻力和桩端阻力的发挥是个异步过程;桩侧摩阻力会出现不同程度的弱化现象;靠近桩端的桩侧摩阻力不仅有弱化现象,还有强化现象;桩端注浆效果越好的桩,单位体积承载力越大。为了充分发挥桩身下部土层的桩侧摩阻力和桩端阻力,并减少桩侧阻力弱化现象,桩基设计时可适当提高桩身砼设计强度,增大桩身刚度,减少桩身压缩量,或者在持力层条件合适下采用桩底高压注浆技术。  相似文献   

18.
为优化提升钻孔灌注桩的设计方案,文中对竖向受压载荷下钻孔灌注桩的荷载传递及受力特性进行了研究。结果表明,最大的桩身轴力均位于深度为3 m处,当加载荷载为1 440 kN时,桩身的轴力最大值为1 205 kN;随着桩顶荷载值的增加,桩身的最大桩侧阻力值也不断增大,最大的桩侧阻力值为140 kPa,最大负摩阻力达到-82 kPa。当桩顶荷载从160 kN增加至1 600 kN时,桩端阻力增幅达到860.2%。桩端阻力占比与施加的桩顶荷载呈先负相关后正相关关系;当荷载达到1 600 kN时,桩顶位移最大达到14.6 mm;卸载为0时,桩顶位移为8.8 mm。  相似文献   

19.
洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究   总被引:19,自引:0,他引:19  
以洞庭湖软土地区某特大拱桥主墩桩基础为工程依托 ,进行了一试桩竖向静载荷试验 ,并基于所获得的现场实测数据探讨了软土地区大直径超长灌注桩的荷载传递机理和竖向承载特性。结果表明 ,软土地区大直径超长桩为典型的摩擦桩 ,其竖向承载力主要由桩侧摩阻力提供 ,而桩端阻力往往难以发挥甚至趋于零 ,设计计算时尚应重视桩身压曲稳定分析和桩顶变形验算。同时 ,建议根据上部结构对基础沉降的要求按桩顶容许沉降量来控制超长桩的竖向承载力 ,并基于线弹性 -全塑性桩侧荷载传递模型给出了相应的计算公式 ,以此获得的桩顶荷载位移计算曲线与实测值吻合良好 ,证明了该思路与分析方法的可行性。  相似文献   

20.
通过室内模型试验,研究了粉砂地层中超长桩的荷载-沉降(Q-s)关系、桩身轴力、桩侧摩阻力、桩身压缩、桩端阻力、桩土相对位移等承载性状及荷载传递规律。结果表明,超长桩的Q-s曲线为缓降型,与端承摩擦桩的Q-s曲线相似。随桩顶荷载的增加,桩侧摩阻力沿桩身分布逐步由一个峰值转变为两个峰值,桩身压缩主要发生在桩身上部,桩侧摩阻力随桩土相对位移增加基本符合双曲线发挥规律。桩端阻力随桩顶荷载增加变化可分为缓慢增长段、加速增长段和减缓破坏段,荷载较小时,桩端阻力与桩端位移基本呈线性关系,随荷载增大,桩端位移加速增长,极限荷载后,桩端出现刺入变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号