首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
针对传统热等效电路模型对IGBT模块结温计算误差较大的问题,提出一种基于传热研究的IGBT模块等效热阻抗模型。通过对IGBT模块内部传热研究,以热流密度变化规律确定热扩散角,由此计算出热网络参数并建立改进的单芯片Cauer网络等效电路模型。然后在此基础上,考虑多芯片之间的热耦合效应,计算出自热热阻和耦合热阻并建立IGBT模块热阻抗矩阵,利用线性叠加原理可对各芯片的结温进行预测计算。最后,将等效热阻抗模型计算出的结温与有限元仿真值进行比较,验证了该模型的有效性与准确性。  相似文献   

2.
为了更准确地描述大功率风电机组变流器IGBT模块内并联芯片的结温,提出一种考虑多热源耦合影响的变流器功率模块结温评估改进模型。从实际2 MW双馈风电机组变流器IGBT模块内部结构和材料参数出发,利用有限元方法分析IGBT模块内多芯片的结温分布和稳态热耦合影响。引入等效耦合热阻抗概念,推导功率模块芯片间热阻抗关系矩阵,并建立考虑多芯片热源影响的IGBT模块改进热网络模型。以某H93-2MW双馈风电机组为例,对比分析了不同功率损耗下改进模型的芯片结温计算结果与有限元和常规热网络模型结果。结果表明了考虑多热源耦合影响的风电变流器功率模块内部芯片结温计算的必要性和有效性,且热耦合影响程度与不同的芯片间距密切相关,需重点关注非边缘位置芯片的热分布。  相似文献   

3.
随着IGBT模块功率等级及密度的提高,因功率损耗而导致芯片温升加剧进而导致变流系统崩溃的问题愈发突出。对功率器件及散热系统的深入研究有助于功率器件封装设计、器件选型、系统布局以及逆变器的可靠运行。本文通过有限元分析方法对IGBT模块和散热系统的瞬态热阻抗进行了提取,所得结果与厂商数据手册吻合,而且通过所用方法验证了热阻抗曲线的普适性,最后利用热特性RC等效网络建立热-电耦合模型,可对芯片动态结温进行预测。  相似文献   

4.
由于恶劣的运行环境,IGBT模块成为电动汽车驱动系统最薄弱的环节。功率模块的失效主要由温度因素引发。为了尽可能准确地预测芯片结温,文中提出一种适用于电动汽车功率模块热分析的紧凑型热网络模型。首先在ANSYS/ICEPAK中搭建包含水冷散热系统的功率模块有限元模型。然后,提出一种考虑上下桥臂热耦合的3D紧凑型热网络模型,并详细地叙述热网络模型参数提取的步骤。最后,3D紧凑型热网络模型的仿真结果与有限元仿真模型高度吻合并且实验结果表明,所提出的热网络模型能够准确预测电动汽车中功率模块的结温。与有限元模型相比,所提出的热网络模型减少仿真时间,适用于功率模块的寿命估计和结温在线计算。  相似文献   

5.
碳化硅(SiC)MOSFET具有耐压高、开关速度快、导通损耗低等优点,将越来越广泛地应用于高效、高功率密度场合.在这些应用场合中,SiC MOSFET面临着严峻的可靠性考验,而结温的在线准确提取是实现器件寿命预测和可靠性评估的重要基础.该文提出一种基于功率模块内置负温度系数(NTC)温度传感器的器件结温在线提取方法.首先建立考虑多芯片热耦合效应的内置温度传感器至功率芯片的热网络模型,并建立SiC MOSFET的损耗快速计算方法;通过有限元仿真提取热网络模型的阻抗参数,并验证该热网络参数在不同边界条件下的稳定性.仿真和实验结果表明,所提出的结温在线估计方法能够准确地获得器件的动态结温,且热网络模型参数不受环境温度、散热条件等边界条件变化的影响,适用于实际任务剖面下的结温监测与寿命预测.  相似文献   

6.
相较于单个硅绝缘栅双极型晶体管(Si IGBT)芯片,碳化硅(SiC)芯片的载流量较小,因此对于同功率等级的功率模块,需要并联更多的芯片。然而,芯片数量的增多会增大模块失效的风险,因此需要一种低寄生电感低结温的封装设计,来提高多芯片并联SiC模块的可靠性。这里通过对多芯片布局以及垫片位置分布的研究,设计出一款低寄生电感,低结温的多芯片并联功率模块结构。最终基于实验和多物理场仿真软件COMSOL对该封装结构进行验证,实验及仿真结果表明所设计的多芯片并联SiC模块满足低感、低结温的设计目标。  相似文献   

7.
以绝缘栅双极晶体管(IGBT)的可靠性研究为背景,针对IGBT模块现有热网络建模及耦合热阻抗提取方法的不足,提出一种采用离散化方波提取模块内部IGBT芯片及反并联二极管(FWD)之间耦合热阻抗的方法。该方法基于热敏电参数(TSEP)测量结温的原理和热网络响应特性,将IGBT模块视为一个黑盒子,通过基于模块端口TSEP的测量来建立其内部热学行为的等效热网络模型,从而可普遍适用于多种内部封装结构的模块。最后通过采用所提方法,对一款典型多芯片并联封装的模块进行实验测量,验证了所提方法的可行性和准确度。  相似文献   

8.
半桥子模块是柔性直流输电系统中模块化多电平换流阀(MMC)的核心单元,根据运行工况参数计算半桥子模块器件的功率损耗是进行绝缘栅双极晶体管(IGBT)模块结温探测的关键,准确的结温波动信息对MMC换流阀系统的可靠性研究和安全运行尤为重要。与一般的两电平逆变器不同,MMC系统中桥臂电流具有与生俱来的直流偏置特性。该文提出了一种基于电热耦合模型的半桥子模块中IGBT器件功率损耗与瞬态结温计算的数学解析方法。首先研究半桥子模块中各导通器件电流复现方法,建立基于开关周期的平均功率损耗计算模型,基于瞬态热阻抗建立半桥子模块中IGBT器件的热网络模型;然后通过一个2MW的柔性直流输电系统算例,计算子模块中上下管开关器件的功率损耗和瞬态结温变化,计算速度是时域仿真模型的1 000倍;最后通过有限元模型验证了文中所提电热耦合模型的有效性。  相似文献   

9.
随着LED芯片功率不断提高所导致的热流密度逐渐增大,结温成为影响LED芯片性能稳定性的关键因素。为有效降低结温,研究如何利用高效的热界面材料,提高芯片与热沉之间的传热。以实际LED车灯为研究对象,进行了不同导热系数热界面材料的性能测试和LED车灯结温试验,配比得到了导热系数较优的液态金属热界面材料。同时,利用计算机对所建模型进行了数值模拟仿真,仿真结果与试验结果相吻合,验证了所建模型与仿真方法的准确性。结果表明:混有铜纳米颗粒的液态金属铋基合金形成的热界面材料导热系数能够达到10.42 W/(m·K),通过降低芯片与热沉之间的接触热阻使LED结温降低了7℃。以上结果为今后LED芯片热界面材料的制备与选择提供了新思路。  相似文献   

10.
将运行工况转换为器件上承受的热荷载是寿命耗损评估的关键,而寿命耗损评估的准确性受限于功率器件结温计算的速度和精确性。模块化多电平变流器(modular multilevel converter,MMC)系统桥臂电流具有与生俱来的直流偏置特性,使得子模块内部产生热不平衡。且长时间任务剖面下,较大的基频结温波动对子模块中IGBT模块寿命评估影响不容忽视。为此,文中提出一种考虑运行参数影响的基频结温波动快速解析计算方法。以1.3MVA MMC并网系统为例,通过实验平台测试了所用器件的动静态参数,建立精确的3D器件损耗模型,将所提的结温波动计算模型与时域电热仿真进行准确性对比,讨论不同运行参数对所提结温计算方法的影响。最后,基于所提方法对实际传输功率下网侧MMC子模块中IGBT模块基频结温波动进行计算,验证该方法有助于准确评估MMC中功率器件可靠性。  相似文献   

11.
针对电动汽车逆变器中功率模块因实时结温过高而造成器件乃至系统失效的问题,提出了基于实时结温观测反馈的逆变器动态电流限幅控制策略。建立绝缘栅双极型晶体管(IGBT)的电热模型,在线观测功率模块中所有IGBT芯片和续流二极管(FWD)芯片的瞬时最大结温;将该热状态以及器件的最大可用热容量输入电流限幅控制器得到逆变器的最大运行电流值,实现逆变器的电流动态限幅控制。测试结果表明,所提控制策略使逆变器安全地工作在最大可用结温范围内,可使逆变器的运行性能极限最大化,提高系统的功率密度和可靠性。  相似文献   

12.
针对利用传统灰色模型进行多芯片组件寿命预测时存在的精度不足,以及预测精度随时间跨度增加而显著降低的问题,提出马尔科夫-尾段双重残差修正的多芯片组件寿命灰色预测方法。将在灰色GM(1,1)模型预测值基础上经马尔科夫法优化后的残差作为尾段灰色残差模型的输入值,实现双重残差修正。以对热循环加速试验条件下得到少量试验数据的影响多芯片组件寿命的电阻值进行寿命预测为例,试验结果表明,相较于传统灰色模型和神经网络预测方法,所提出方法在小样本条件下平均残差分别减小了80.469%和68.53%,预测精度得以提高,结果更加可靠,能够更准确地预测多芯片组件的寿命。  相似文献   

13.
在大功率系统中,为了扩大电路的功率等级,开关器件往往会并联使用。为了保证绝缘栅双极型晶体管(IGBT)模块工作在安全范围,需要建立并联器件的瞬态电热模型。首先,重点分析了结温变化对损耗产生的影响,通过建立不同开关阶段等效电路分析推导电压、电流变化规律。同时,通过搭建测试电路得出受温度影响的参数与温度之间的定量关系。其次,在考虑并联器件之间的散热路径耦合基础上,提出并分析了一种改进的IGBT并联热阻抗模型。最后,基于损耗模型和热阻抗模型建立IGBT并联电热模型。搭建实验平台比较不同模块安装距离对瞬态结温的影响。与传统模型比较,计算结果与实验测试结果吻合,验证了改进的电热模型的准确性。  相似文献   

14.
温度循环下的疲劳累计损伤是IGBT模块失效的主要原因,计算IGBT模块的结温对预测其寿命具有重要意义。为了研究IGBT模块工作过程中结温变化情况,首先通过计算IGBT和FWD的功率损耗建立了IGBT模块电模型,然后在分析IGBT模块热传导方式的基础上建立了IGBT模块热模型,进而基于电模型和热模型建立了IGBT模块的电-热耦合模型,最后以三相桥式逆变器为例对IGBT和FWD的结温进行了仿真分析。结果表明,由于IGBT和FWD处于开关状态,两者的结温波形均呈波动形状,且波动均值经过短时间上升后稳定于一恒定值,所以逆变器用IGBT模块开始工作后经短时间的热量积累最终达到热稳定状态;由于IGBT的开关损耗比FWD大,使得IGBT结温受开关频率的影响较大。  相似文献   

15.
为了提高普通蒸汽腔平板热管的机械强度和传热性能,提出了一种热端与冷端之间设有液态工质回流柱的新型平板热管,并对以该种平板热管为热扩散基板的集成模块的传热性能进行了实验研究。研究结果表明,在热耗散功率较大时,平板热管基板模块的结壳热阻、管芯至基板间热阻均比纯铜基板模块小,而且其结壳热阻分别比同厚度和同重量的纯铜基板模块的结壳热阻小30%和40%。该结果说明新型平板热管比纯铜基板具有更好的热扩散性能,适合于大功率模块设计  相似文献   

16.
绝缘栅双极型晶体管IGBT(insulated gate bipolar transistor)模块结温的精确计算是开展功率器件主动热管理、寿命预测的前提和关键。IGBT模块的导通压降和开关损耗均受温度影响,在计算损耗时应根据温度对结果进行修正。基于空间矢量脉宽调制SVPWM(space vector pulse width modulation)的两电平三相逆变器,利用热阻抗模型预测法对IGBT模块的结温进行监测,建立了结温计算模型。然后通过PLECS软件热仿真对比验证了有无温度修正的理论计算方法,结果表明温度修正有利于提高结温计算的准确性。最后开展小功率两电平三相逆变器实验研究,利用热敏电阻法测量了IGBT模块的结温,计算结果与实验结果误差率小于2%,验证了结温计算模型的准确性和可行性。  相似文献   

17.
提出一种基于传热动力学作用特征建立绝缘栅双极型晶体管(IGBT)结温预测模型的建模方法。针对目前IGBT结温预测模型无法灵活应用于多时间尺度仿真与快速计算模式的问题,通过将简单(阶跃)信号下得到的动力学作用分量应用于复杂(PWM)信号下,建立IGBT结温预测数学模型。基于经典Cauer传热RC网络结构,建立针对阶跃功率输入信号的IGBT结温预测数学模型。提出采用自然解耦的方法,对IGBT传热动力学特性进行研究,建立传热动力学作用分量的准确表征。在此基础上,采用自然解耦与精确补偿的方法,建立针对PWM脉冲功率输入信号的IGBT瞬态结温预测数学模型。仿真与实验结果验证了模型的正确性与准确性。所建IGBT结温预测数学模型对于查明IGBT器件的传热动力学作用机理,实现结温的快速有效仿真与计算,建立IGBT传热多时间尺度数学模型具有重要的理论意义和应用价值。  相似文献   

18.
计及电热耦合的潮流数学模型与算法   总被引:3,自引:2,他引:1  
电热协调(ETC)理论的提出对实时环境下输电元件载荷能力的有效利用具有重要意义,但由于电与热之间的紧密耦合,使电力系统的潮流计算变得复杂,文中针对该问题进行了深入研究。将输电线路热动态微分方程引入到现有的电力系统潮流模型之中,利用隐式梯形的差分方法将该微分方程代数化,使输电线路温度成为电力系统运行的一个新的状态量,从而提出了计及电热耦合的潮流计算数学模型,并在推导得到牛顿法求解该模型的修正方程基础上,进一步提出了适应电热耦合处理的简化计算方法,该模型和算法实现了电气量和其温度的统一处理,不仅反映潮流的电的信息,而且能够提供输电线路热惯性的动态过程,即温度变化信息,从而实现输电线路载荷能力由温度评判的目的。最后通过算例分析验证了该模型和算法的有效性,为进一步开展电力系统运行调度中的电热协调理论研究奠定了基础。  相似文献   

19.
针对不同疲劳寿命时期对风电变流器绝缘栅双极型晶闸管(IGBT)模块结温的影响,分析焊层在不同脱落度下的IGBT模块热阻变化规律,并建立考虑热阻变化的改进热网络模型。首先,依据风电机组变流器IGBT模块的结构和材料属性,建立三维有限元热-结构耦合分析模型,对基板焊层和芯片焊层在不同脱落度下IGBT模块结温和热应力的分布规律进行仿真分析。其次,确定不同焊层脱落度下其热阻增量值,并建立IGBT模块改进热网络模型。最后,将三维有限元模型和改进热网络模型的结温计算结果进行对比分析,验证了所提的改进热网络模型的有效性。  相似文献   

20.
传统结温估计方法因其无法根据 IGBT 模块健康状态实时调校,从而导致当模块发生封装退化后无法准确估计结温。 因此,为解决在实际工况中模块封装退化造成的结温估计误差问题,建立了一个基于多数据驱动的以人工神经网络为主体的 IGBT 结温在线估计模型。 首先,确定饱和压降作为温敏电参数并研究其构成,分析其与集电极电流,芯片结温和封装退化之间 的耦合关系。 随后,为解决封装退化造成的饱和压降温度特性变化问题,提出结合米勒电压温度特性的优势,配合饱和压降与 集电极电流驱动人工神经网络算法构建结温估计模型,并通过搭建实验平台提取数据,完成模型的训练。 最终,通过与传统结 温估计方法对比估计误差,新模型将结温估计误差从 20%降低到了 5%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号