首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Marine Geodesy》2013,36(3-4):147-157
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were: 1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES); 2. To verify that platform performance requirements are met with respect to Jason-1 requirements; 3. To verify that payload instruments performance requirements evaluated at instrument level are met; 4. To assess the performance of the Jason-1 Ground System. This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

2.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

3.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

4.
One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies   总被引:2,自引:0,他引:2  
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1-2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

5.
《Marine Geodesy》2013,36(3-4):367-382
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

6.
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1–2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

7.
《Marine Geodesy》2013,36(3-4):305-317
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

8.
《Marine Geodesy》2013,36(3-4):239-259
We present calibration results from Jason-1 (2001–) and TOPEX/POSEIDON (1992–) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

9.
The Jason-1 dual-frequency nadir ionosphere Total Electron Content (TEC) for 10-day cycles 1–67 is validated using absolute TEC measured by Japan's GPS Earth Observation Network (GEONET), or the GEONET Regional Ionosphere Map (RIM). The bias estimates (Jason–RIM) are small and statistically insignificant: 1.62 ± 9 TECu (TEC unit or 1016 electrons/m2, 1 TECu = 2.2 mm delay at Ku-band) and 0.73 ± 0.05 TECu, using the along-track difference and Gaussian distribution method, respectively. The bias estimates are –3.05 ± 10.44 TECu during daytime passes, and 0.02 ± 8.05 TECu during nighttime passes, respectively. When global Jason-1 TEC is compared with the Global Ionosphere Map (GIM) from the Center for Orbit Determination in Europe (or CODE) TEC, the bias (Jason–GIM) estimate is 0.68 ± 1.00 TECu, indicating Jason-1 ionosphere delay at Ku-band is longer than GIM by 3.1 mm, which is at present statistically insignificant. Significant zonal distributions of biases are found when the differences are projected into a sun-fixed geomagnetic reference frame. The observed biases range from –7 TECu (GIM larger by 15.4 mm) in the equatorial region, to +2 TECu in the Arctic region, and to +7 TECu in the Antarctica region, indicating significant geographical variations. This phenomena is primarily attributed to the uneven and poorly distributed global GPS stations particularly over ocean and near polar regions. Finally, when the Jason-1 and TOPEX/Poseidon (T/P) TECs were compared during Jason-1 cycles 1–67 (where cycles 1–21 represent the formation flight with T/P, cycles 22–67 represent the interleave orbits), the estimated bias is 1.42 ± 0.04 TECu. It is concluded that the offset between Jason/TOPEX and GPS (RIM or GIM) TECs is < 4 mm at Ku-band, which at present is negligible.  相似文献   

10.
《Marine Geodesy》2013,36(3-4):187-199
The Jason-1 satellite altimeter mission represents a first step towards operational oceanography from satellite altimeter missions. An operational data product, the Operational Sensor Data Record (OSDR), provides measurements from the on-board altimeter and radiometer within 3–5 h of real time. This data product is a wind and wave product that is aimed towards near-real–time meteorological applications. A higher accuracy and more detailed data product, the Interim Geophysical Data Record (IGDR), that is better suited to detailed scientific studies of ocean topography, is available no sooner than 2–3 days from real time. The measurements reported on the OSDR primarily differ from those on the IGDR in that the OSDR reports measurements derived from on-board processing of the altimeter waveforms, while ground retracking of the waveforms is performed for the IGDR. The altimeter-derived measurements on the OSDR are validated through a statistical evaluation of the differences between data on the OSDR and IGDR. In doing so, the impact of ground retracking of the altimeter waveforms is also illustrated.  相似文献   

11.
TOPEX/Poseidon and Jason-1: Absolute Calibration in Bass Strait, Australia   总被引:2,自引:0,他引:2  
Updated absolute calibration results from Bass Strait, Australia, are presented for the TOPEX/Poseidon (T/P) and Jason-1 altimeter missions. Data from an oceanographic mooring array and coastal tide gauge have been used in addition to the previously described episodic GPS buoy deployments. The results represent a significant improvement in absolute bias estimates for the Bass Strait site. The extended methodology has allowed comparison between the altimeter and in situ data on a cycle-by-cycle basis over the duration of the dedicated calibration phase (formation flight period) of the Jason-1 mission. In addition, it has allowed absolute bias results to be extended to include all cycles since the T/P launch, and all Jason-1 data up to cycle 60. Updated estimates and formal 1-sigma uncertainties of the absolute bias computed throughout the formation flight period are 0 ± 14 mm for T/P and +152 + 13 mm for Jason-1 (for the GDR POE orbits). When JPL GPS orbits are used for cycles 1 to 60, the Jason-1 bias estimate is 131 mm, virtually identical to the NASA estimate from the Harvest Platform off California calculated with the GPS orbits and not significantly different to the CNES estimate from Corsica. The inference of geographically correlated errors in the GDR POE orbits (estimated to be approximately 17 mm at Bass Strait) highlights the importance of maintaining globally distributed verification sites and makes it clear that further work is required to improve our understanding of the Jason-1 instrument and algorithm behavior.  相似文献   

12.
《Marine Geodesy》2013,36(3-4):131-146
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

13.
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

14.
The Jason-1 satellite altimeter mission represents a first step towards operational oceanography from satellite altimeter missions. An operational data product, the Operational Sensor Data Record (OSDR), provides measurements from the on-board altimeter and radiometer within 3-5 h of real time. This data product is a wind and wave product that is aimed towards near-real-time meteorological applications. A higher accuracy and more detailed data product, the Interim Geophysical Data Record (IGDR), that is better suited to detailed scientific studies of ocean topography, is available no sooner than 2-3 days from real time. The measurements reported on the OSDR primarily differ from those on the IGDR in that the OSDR reports measurements derived from on-board processing of the altimeter waveforms, while ground retracking of the waveforms is performed for the IGDR. The altimeter-derived measurements on the OSDR are validated through a statistical evaluation of the differences between data on the OSDR and IGDR. In doing so, the impact of ground retracking of the altimeter waveforms is also illustrated.  相似文献   

15.
We present calibration results from Jason-1 (2001-) and TOPEX/POSEIDON (1992-) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

16.
The Jason-1 Mission   总被引:1,自引:2,他引:1  
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

17.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

18.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

19.
An absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 altimeters has been undertaken during the dedicated calibration phase of the Jason-1 mission, in Bass Strait, Australia. The present study incorporates several improvements to the earlier calibration methodology used for Bass Strait, namely the use of GPS buoys and the determination of absolute bias in a purely geometrical sense, without the necessity of estimating a marine geoid. This article focuses on technical issues surrounding the GPS buoy methodology for use in altimeter calibration studies. We present absolute bias estimates computed solely from the GPS buoy deployments and derive formal uncertainty estimates for bias calculation from a single overflight at the 40-45 mm level. Estimates of the absolute bias derived from the GPS buoys is -10 ± 19 mm for T/P and +147 ± 21 mm for Jason-1 (MOE orbit) and +131 ± 21 mm for Jason-1 (GPS orbit). Considering the estimated error budget, our bias values are equivalent to other determinations from the dedicated NASA and CNES calibration sites.  相似文献   

20.
基于T/P 和Jason-1 高度计数据的渤黄东海潮汐信息提取   总被引:1,自引:1,他引:0  
仲昌维  杨俊钢 《海洋科学》2013,37(10):78-85
对19 a 的TOPEX/POSEIDON(以下称T/P)和Jason-1 卫星高度计测高数据进行调和分析, 得到渤黄东海海域的8 个主要分潮(M2、S2、N2、K2、K1、O1、P1 和Q1)。提出一种将两类卫星高度计数据统一的方法, 消除了因两类卫星高度计校正算法等不同所导致的相互之间的偏差。变轨后的T/P与Jason-1 卫星加密了高度计对潮汐观测的空间分布。通过对交叉点处升轨与降轨的潮汐调和分析结果进行比较, 检验调和分析方法及高度计数据的可靠性; 将基于高度计数据的调和分析结果与验潮站资料进行比较, 以检验其正确性。4 个主要分潮(M2、S2、K1、O1)振幅之差的均方根介于1.0~1.8 cm, 迟角之差的均方根介于4.1°~7.8°。与已有研究结果相比, 调和分析结果的精确性有所提高。在此基础上, 综合变轨前后两类高度计测高数据的调和分析结果, 给出并分析了渤黄东海4 个主要分潮的同潮图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号