首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 15 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates and cofactors across the inner membrane. Here the identification of the mitochondrial carrier for the essential cofactor thiamine pyrophosphate (ThPP) is described. The protein has been overexpressed in bacteria, reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, cells lacking the gene for this carrier had reduced levels of ThPP in their mitochondria, and decreased activity of acetolactate synthase, a ThPP-requiring enzyme found in the organellar matrix. They also required thiamine for growth on fermentative carbon sources.  相似文献   

9.
10.
11.
Thiamine pyrophosphokinase (E.C. 2.7.6.2.) from Saccharomyces cerevisiae was found to require the presence of a non-protein, non-metal compound for its activity. myo-Inositol was found capable of stimulating the kinase activity in the presumably resolved but otherwise crude sample of the enzyme. The hexytol was also found capable of inducing the enzyme in growing yeast cells. The cultured yeast cells, in which the kinase had been induced, were used as source of the enzyme for its purification. The compound that had been left adsorbed to the final column of DEAE-Sephadex was proved to have a coenzyme activity towards the enzyme and tentatively identified with myo-inositol 1-pyrophosphate. A sample of synthetic myo-inositol 1-pyrophosphate was made and its coenzyme activity was observed.  相似文献   

12.
Six different pyruvate decarboxylase mutants of Saccharomyces cerevisiae were isolated. They belong to two unlinked complementation groups. Evidence is presented that one group is affected in a structural gene. The fact that five of the six mutants had residual pyruvate decarboxylase activity provided the opportunity for an intensive physiological characterization. It was shown that the loss of enzyme activity in vitro is reflected in a lower fermentation rate, an increased pyruvate secretion, and slower growth on a 2% glucose medium. The different effects of antimycin A on leaky mutants grown on ethanol versus the same mutants grown on glucose support the view that glucose induces some of the glycolytic enzymes, especially pyruvate decarboxylase.  相似文献   

13.
Methods are described for the isolation and gas chromatographic-mass spectrometric analysis of the 4-methyl-5-beta-hydroxyethyl thiazole moiety of thiamine in microbial cells. Using these methods, it was determined that in Escherichia coli the nitrogen atom in the thiazole ring of thiamine is derived solely from L-tyrosine.  相似文献   

14.
The reaction catalyzed by the thiamin-diphosphate-dependent yeast pyruvate decarboxylase, which is hysteretically regulated by pyruvate, undergoes paracatalytic oxidative diversion by 2,6-dichlorophenolindophenol, which traps a carbanionic intermediate and diverts the product from acetaldehyde to acetate (Christen, P. Meth. Enzymol. 1977, 46, 48). This reaction is now shown to exhibit an oxidant on-rate constant somewhat faster than that for pyruvate in the normal catalytic cycle and a product off-rate constant about 60-fold smaller than that for acetaldehyde. Both on-rates and off-rates exhibit an inverse solvent isotope effect of 1.5-2, observed in normal catalysis as a signal of sulfhydryl addition to the keto group of pyruvate at the allosteric regulatory site. The findings are consistent with a model for regulation in which the sulfhydryl-addition process mediates access to a fully catalytically competent active site, the oxidative-diversion reaction being forced to make use of the normal entry exit machinery.  相似文献   

15.
16.
17.
The influence of effectors of yeast pyruvate decarboxylase, phosphate, pyruvamide, thiamin diphosphate and Mg++, on the pH-dependent equilibrium between dimers and tetramers was studied by synchrotron radiation X-ray solution scattering. Thiamin diphosphate and phosphate shift the equilibrium to higher pH values without altering the structure of the oligomers. Pyruvamide, a substrate analogue activator, induces a significant change in the structure of the tetramer. By eliminating radiation damage by addition of dithioerythrol to the buffers, the scattering curves could be measured accurately over a large angular range. They were expanded in terms of spherical harmonics to obtain the shapes of the dimers and tetramers with higher resolution than was hitherto possible. This also allowed us to position the dimers, which are centrosymmetric at low resolution, in the tetramers which have 222 symmetry. The results indicate that addition of pyruvamide results in a less compact tetramer owing to structural changes in the dimers and to their displacements.On leave from the Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Leninsky pr. 59, Russia Correspondence to: M. H. J. Koch  相似文献   

18.
H Li  F Jordan 《Biochemistry》1999,38(31):10004-10012
Oligonucleotide-directed site-specific mutagenesis was carried out on pyruvate decarboxylase (EC 4.1.1.1) from Saccharomyces cerevisiae at W412, located on the putative substrate activation pathway and linking E91 on the alpha domain with W412 on the gamma domain of the enzyme. While C221 on the beta domain is the residue at which substrate activation is triggered [Baburina, I., et al. (1994) Biochemistry 33, 5630-5635; Baburina, I., et al. (1996) Biochemistry 35, 10249-10255], that information, via the substrate bound at C221, is transmitted to H92 on the alpha domain, across the domain divide from C221 [Baburina, I., et al. (1998) Biochemistry 37, 1235-1244; Baburina, I., et al. (1998) Biochemistry 37, 1245-1255], thence to E91 on the alpha domain [Li, H., and Jordan, F. (1999) Biochemistry 38, 9992-10003], and then on to W412 on the gamma domain and to the active site thiamin diphosphate located at the interface of the alpha and gamma domains [Arjunan, D., et al. (1996) J. Mol. Biol. 256, 590-600]. Substitution at W412 with F and A was carried out, resulting in active enzymes with specific activities about 4- and 10-fold lower than that of the wild-type enzyme. Even though W412 interacts with E91 and H115 via a main chain hydrogen bond donor and acceptor, respectively, there is clear evidence for the importance of the indole side chain of W412 from a variety of experiments: thermostability, fluorescence quenching, and the binding constants of the thiamin diphosphate, and circular dichroism spectroscopy, in addition to conventional steady-state kinetic measurements. While the substrate activation is still prominent in the W412F variant, its level is very much reduced in the W412A variant, signaling that the size of the side chain is also important in positioning the amino acids surrounding the active center to achieve substrate activation. The fluorescence studies demonstrate that W412 is a relatively minor contributor to the well-documented fluorescence of apopyruvate decarboxylase in its native state. The information about the W412 variants provides strong additional support for the putative substrate activation pathway from C221 --> H92 --> E91 --> W412 --> G413 --> thiamin diphosphate. The accumulating evidence for the central role of the beta domain in stabilizing the overall structure is summarized.  相似文献   

19.
The crystal structure of the complex of the thiamine diphosphate dependent tetrameric enzyme pyruvate decarboxylase (PDC) from brewer's yeast strain with the activator pyruvamide has been determined to 2.4 A resolution. The asymmetric unit of the crystal contains two subunits, and the tetrameric molecule is generated by crystallographic symmetry. Structure analysis revealed conformational nonequivalence of the active sites. One of the two active sites in the asymmetric unit was found in an open conformation, with two active site loop regions (residues 104-113 and 290-304) disordered. In the other subunit, these loop regions are well-ordered and shield the active site from the bulk solution. In the closed enzyme subunit, one molecule of pyruvamide is bound in the active site channel, and is located in the vicinity of the thiazolium ring of the cofactor. A second pyruvamide binding site was found at the interface between the Pyr and the R domains of the subunit in the closed conformation, about 10 A away from residue C221. This second pyruvamide molecule might function in stabilizing the unique orientation of the R domain in this subunit which in turn is important for dimer-dimer interactions in the activated tetramer. No difference electron density in the close vicinity of the side chain of residue C221 was found, indicating that this residue does not form a covalent adduct with an activator molecule. Kinetic experiments showed that substrate activation was not affected by oxidation of cysteine residues and therefore does not seem to be dependent on intact thiol groups in the enzyme. The results suggest that a disorder-order transition of two active-site loop regions is a key event in the activation process triggered by the activator pyruvamide and that covalent modification of C221 is not required for this transition to occur. Based on these findings, a possible mechanism for the activation of PDC by its substrate, pyruvate, is proposed.  相似文献   

20.
In order to investigate the relationship between malate oxidation and subsequent cycle reactions, the effects of oxaloacetate, pyruvate, and thiamine pyrophosphate on malate oxidation in mung bean (Phaseolus aureus var. Jumbo) hypocotyl mitochondria were quantitatively examined. Malate oxidation was optimally stimulated by addition of pyruvate and thiamine pyrophosphate, whose addition lowered the apparent Km for malate from 5 mm to 0.1 mm. Intermediate analysis showed that the stimulatory effect was correlated with removal of oxaloacetate to citrate. Oxaloacetate added alone was shown not to be metabolized until addition of pyruvate and thiamine pyrophosphate; then oxaloacetate was converted in part to pyruvate and also to citrate. These results establish that malate oxidation in mung bean mitochondria is subject to control by oxaloacetate levels, which are primarily determined by the resultant of the activities of malate dehydrogenase, citrate synthase, and pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号