首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, intravitreally injected in goldfish eye, involves interplexiform retinal neurons and depletes tyrosine hydroxylase immunoreactivity and dopamine levels. This induced neurotoxicity was prevented by the concomitant administration in nontoxic doses (10 μg) of quinolinic acid, an endogenous structural analogue of N-methyl -aspartate with excitotoxic properties. Quinolinic acid is ineffective on the retinal degeneration induced by 1-methyl-4- phenylpyridinium ion. This fact suggests that quinolinic acid inhibits the MAO-B oxidation of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. MK-801, a noncompetitive antagonist of glutamate NMDA-receptors, exerts partial protective effects on MPTP-induced delayed toxicity in mammals. In the goldfish eye, MK-801, injected in low concentration, and in conjunction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or 1-methyl-4-phenylpyridinium ion, did not prevent retinal neurodegeneration. Ten μg of MK-801 alone did not affect retinal neurons, while a higher concentration (20 μg) causes the chromatolysis of some photoreceptor nuclei.  相似文献   

2.
Oxidase electrode measurements have shown that the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium autoxidizes to hydrogen peroxide and 1-methyl-4-phenylpyridinium in a reaction promoted by iron chelates. The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity is discussed in the light of these findings.  相似文献   

3.
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed.  相似文献   

4.
A saturable, specific, high-affinity binding site for [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was found in rat brain homogenates. The CNS regional distribution, the subcellular fractionation, and the displacement by pargyline, clorgyline, and deprenyl suggest that this binding site may correspond to monoamine oxidase. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibited the oxidative deamination of dopamine, both in vivo and in vitro. Striatal levels of 3,4-dihydroxyphenylacetic acid were significantly reduced shortly after intravenous administration, and returned to normal values after a few hours. The in vitro formation of 3,4-dihydroxyphenylacetic acid from dopamine was inhibited by concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine comparable to those of pargyline.  相似文献   

5.
Effects of 1-methyl-4-phenylpyridine(MPP+), a putative neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), on the contents of dopamine were examined in the various regions of the rat brain. Under anesthesia with pentobarbital sodium and flunitrazepam, MPP+ 150 micrograms/rat was intracerebroventricularly infused for 5 hours, at 30 micrograms/100 microliters/hr. Seven days later, the contents of dopamine, but not those of noradrenaline and activities of choline acetyl transferase in the brain were found to be significantly decreased, as compared to findings in the respective controls. The MPP+-induced depletion of dopamine was most evident in the striatum (38% of control). Contents of dopamine in the substantia nigra and ventral tegmental area were not significantly affected by MPP+. These results are interpreted to mean that intracerebroventricular continuous infusion of MPP+, in a relatively low concentration, induces a moderate but relatively specific disruption of central dopaminergic nerve terminals in rats, presumably by the selective accumulation of this neurotoxic agent into these nerve terminals.  相似文献   

6.
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed.  相似文献   

7.
When uptake of the Parkinson's syndrome inducing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its major brain metabolite MPP+ (1-methyl-4-phenylpyridinium ion) by human platelets were compared in platelet rich plasma, a much higher rate was observed for the metabolite. The uptake process was saturable (Km = 6.8 microM; Vmax = 0.064 nmole/min/mg protein) and could be blocked by inhibitors of serotonin uptake. The accumulation of MPP+ by the platelets was accompanied by a decrease in intracellular ATP and an inhibition of mitochondrial state 3 respiration. These findings are consistent with earlier reports of the effect of MPP+ on isolated mitochondria as a potential cytotoxic mechanism, but also demonstrate that the dopamine uptake system is not the only means by which this metabolite can be efficiently transported into cells.  相似文献   

8.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin causing symptoms that resemble those observed in patients suffering from Parkinson's disease. However, in animal or human organisms, MPTP is converted to MPDP(+) (1-methyl-4-phenyl-2,3-dihydropyridinium) and further to MPP(+) (1-methyl-4-phenylpyridinium); the latter compound is the actual neurotoxin. In this report, we demonstrate that MPDP(+) and MPP(+) can form stacking complexes with methylxanthines (caffeine and penthoxifylline), which leads to significant impairment of the biological activity of these toxins (as measured by their mutagenicity).  相似文献   

9.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+.  相似文献   

10.
Taurine, a known antioxidant and neuroprotector has been investigated for its free radical scavenging action in vitro in isolated mitochondria, and tested whether it protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in mice. Taurine (0.1-10 mM) did not affect 1-methyl-4-phenyl pyridinium-induced hydroxyl radical production in isolated mitochondria. Systemic administration of taurine (250 mg/kg, i.p.) caused a small, but significant loss of dopamine levels in the striatum of mice. Taurine failed to reverse MPTP-induced striatal dopamine depletion, but caused significant increase in dopamine turnover in these animals. In the light of the present study it may be suggested that consumption of taurine may neither help in scavenging of neurotoxic hydroxyl radicals in the brain mitochondria, nor would it help in blocking the process of neurodegeneration.  相似文献   

11.
M V Kindt  R E Heikkila 《Life sciences》1986,38(16):1459-1462
Pretreatment of mice with the potent and selective monoamine oxidase B (MAO-B) inhibitor MDL 72145 ((E)-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine) protected against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice treated with MDL 72145 prior to MPTP did not exhibit the decrement in the neostriatal content of dopamine and its metabolites normally seen after MPTP administration. This observation adds further support to the concept that the oxidation of MPTP by MAO-B to its corresponding pyridinium analog, 1-methyl-4-phenylpyridinium (MPP+), is an important feature of the neurotoxic process.  相似文献   

12.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

13.
The neurotoxic properties of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are dependent on its metabolic activation in a reaction catalyzed by centrally located monoamine oxidase B (MAO-B). This reaction ultimately leads to the permanently charged 1-methyl-4-phenylpyridinium species MPP(+), a 4-electron oxidation product of MPTP and a potent mitochondrial toxin. The corresponding 5-membered analogue, 1-methyl-3-phenyl-3-pyrroline, is also a selective MAO-B substrate. Unlike MPTP, the MAO-B-catalyzed oxidation of 1-methyl-3-phenyl-3-pyrroline is a 2-electron process that leads to the neutral 1-methyl-3-phenylpyrrole. MPP(+) is thought to exert its toxic effects only after accumulating in the mitochondria, a process driven by the transmembrane electrochemical gradient. Since this energy-dependent accumulation of MPP(+) relies upon its permanent charge, 1-methyl-3-phenyl-3-pyrrolines and their pyrrolyl oxidation products should not be neurotoxic. We have tested this hypothesis by examining the neurotoxic potential of 1-methyl-3-phenyl-3-pyrroline and 1-methyl-3-(4-chlorophenyl)-3-pyrroline in the C57BL/6 mouse model. These pyrrolines did not deplete striatal dopamine while analogous treatment with MPTP resulted in 65-73% depletion. Kinetic studies revealed that both 1-methyl-3-phenyl-3-pyrroline and its pyrrolyl oxidation product were present in the brain in relatively high concentrations. Unlike MPP(+), however, 1-methyl-3-phenylpyrrole was cleared from the brain quickly. These results suggest that the brain MAO-B-catalyzed oxidation of xenobiotic amines is not, in itself, sufficient to account for the neurodegenerative properties of a compound like MPTP. The rapid clearance of 1-methyl-3-phenylpyrroles from the brain may contribute to their lack of neurotoxicity.  相似文献   

14.
Explants of embryonic rat substantia nigra in organotypic culture are sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at concentrations approximating the doses given in vivo to monkeys. Fluorescence microscopy and 3H-dopamine uptake measurements reveal that the toxicity is selective for dopamine neurons, whereas other neurons and cells in the culture appear normal by phase contrast microscopy. Reduced MPTP (piperidine analog) is inactive in the tissue culture model, while fully oxidized MPTP (pyridinium analog) destroys dopamine neurons. Pargyline and deprenyl, two monoamine oxidase inhibitors, inhibit the neurotoxic action of MPTP. Pargyline and deprenyl also protect monkeys in vivo. The results implicate monoamine oxidase in the mechanism of action of MPTP. Two possible mechanisms for protection by monoamine oxidase are discussed.  相似文献   

15.
The dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) derives from its metabolism to 1-methyl-4-phenyl-pyridinium cation (MPP+), which is then selectively accumulated in dopaminergic neurons. In an effort to assess the structural requirements governing MPP+ cytotoxicity, we evaluated dopaminergic toxicity of MPP+ analogues 3 weeks after their microinfusion into rat substantia nigra. We also evaluated the substrate suitability of MPP+ analogues for high-affinity dopamine uptake in striatal synaptosomes by measuring their ability to induce specific dopamine release. The intranigral neurotoxicity of MPP+ analogues in vivo correlates mainly with their in vitro inhibitory activity on mitochondrial respiration, consistent with a compromise in cellular energy production as the principal mechanism of MPTP-induced cell death. This study extends the structure-neurotoxicity data base beyond that obtainable using MPTP analogues, since many of these are not metabolized to pyridinium compounds. Such information is crucial to assess which possible endogenous or exogenous compounds may exert MPTP/MPP(+)-like toxicity.  相似文献   

16.
W J Nicklas  I Vyas  R E Heikkila 《Life sciences》1985,36(26):2503-2508
1-methyl-4-phenylpyridine (MPP+), a major metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) inhibited the ADP-stimulated and uncoupled oxidation of NADH-linked substrates by brain mitochondrial preparations. MPTP itself was ineffective. The apparent Ki's for MPP+ inhibition of pyruvate or glutamate oxidation by purified rat brain mitochondria were approximately 300 and 400 microM, respectively; with mouse brain mitochondria the values were lower, 60 and 150 microM, respectively. Succinate oxidation was unaffected by either compound. Compromise of mitochondrial oxidative capacity by MPP+ could be an important factor in mechanisms underlying the toxicity of MPTP.  相似文献   

17.
We previously reported that 8-oxoguanine (8-oxoG) accumulates in the cytoplasm of dopamine neurons in the substantia nigra of patients with Parkinson's disease and the expression of MTH1 carrying an oxidized purine nucleoside triphosphatase activity increases in these neurons, thus suggesting that oxidative damage in nucleic acids is involved in dopamine neuron loss. In the present study, we found that levels of 8-oxoG in cellular DNA and RNA increased in the mouse nigrostriatal system during the tyrosine hydroxylase (TH)-positive dopamine neuron loss induced by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MTH1-null mice exhibited a greater accumulation of 8-oxoG in mitochondrial DNA accompanied by a more significant decrease in TH and dopamine transporter immunoreactivities in the striatum after MPTP administration, than in wild-type mice. We thus demonstrated that MTH1 protects the dopamine neurons from oxidative damage in the nucleic acids, especially in the mitochondrial DNA of striatal nerve terminals of dopamine neurons.  相似文献   

18.
We investigated in vivo the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the brain and liver of rats 45 min after the systemic administration of 50 mg/kg of the neurotoxin. The metabolites present in brain and liver extracts were identified through multiple analytical methods by comparison to authentic compounds obtained from a number of chemical oxidations of MPTP. Our results indicate the presence of approximately 15% unreacted MPTP and relatively large amounts of both 1-methyl-4-phenylpyridinium (MPP+) and a mixture of three nonpolar lactams: 1-methyl-4-phenyl-5,6-dihydro-2(1H)-pyridinone, 1-methyl-4-phenyl-2(1H)-pyridinone, and a previously unreported metabolite 1-methyl-4-phenyl-2-piperidinone. Whereas MPP+ was more prevalent in the brain than in the liver, the lactam metabolites were more predominant in the liver. The amounts of the N-oxide and N-demethylated metabolites of MPTP were minimal.  相似文献   

19.
The parkinsonian inducing drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated in a reaction catalyzed by the flavoenzyme monoamine oxidase B (MAO-B) to form the corresponding dihydropyridinium and subsequently pyridinium metabolites. As part of our ongoing studies to characterize the structural features responsible for this unexpected biotransformation, we have examined the MAO-B substrate properties of a variety of MPTP analogues bearing various heteroaryl groups at the 4-position of the tetrahydropyridinyl ring. The newly synthesized analogues are 4-(1-methylimidazol-2-yl)-, 4-(3-methylfuran-2-yl)-, 4-(3-methylthien-2-yl)-, 4-(3,4-dimethylpyrrol-1-yl)-, 4-(3-methylpyrrol-2-yl)-, and 4-(1,3-dimethylpyrrol-2-yl)-1-methyl-1,2,3,6-tetrahydropyridine. Except for the 4-(1-methylimidazol-2-yl) analogue, all compounds displayed good to excellent substrate properties. The 1-methyl-4-(3-methylfuran-2-yl) analogue is the most active member of this series with a kcat/Km value greater than 8,500 min(-1)mM(-1). The results of these studies are discussed in terms of catalytic pathways proposed for MAO-B.  相似文献   

20.
1-Methyl-4-phenylpyridinium ion, a major brain metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, is an inhibitor of Complex I of the mitochondrial respiratory chain. We have synthesized several analogs of 1-methyl-4-phenylpyridinium ion containing various alkyl groups in the 4' position of the phenyl ring and have tested them for their abilities to inhibit the oxidation of NADH-linked substrates by intact mouse liver mitochondria. These compounds are considerably more potent inhibitors than MPP+ itself, with potency increasing as the length of the alkyl chain increases. The most potent inhibitor, 1-methyl-4-(4'heptylphenyl)pyridinium ion, was about 200 times as effective as MPP+. These analogs should prove to be useful tools for studying the nature of the process whereby MPP+ and its pyridinium analogs interact with Complex I to inhibit mitochondrial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号