首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 制备具有不同电位差的多层阳极Ni-P/Ni-Zn-P复合镀层.方法 采用化学镀的方法,在Q235钢基体表面制备内层为低磷Ni-P合金、中层为高磷Ni-P合金、外层为Ni-Zn-P合金镀层的三层复合镀层.通过金相显微镜、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、电化学工作站等仪器对复合镀层表面形貌、成分结构及腐蚀电位进行分析.结果 相较于低磷Ni-P镀层和高磷Ni-P镀层,Ni-P/Ni-Zn-P三层复合镀层的晶胞大小均匀一致且胞与胞之间致密平滑.内层低磷Ni-P镀层断面厚度约为14.5μm,镍的质量分数约为96.5%,磷的质量分数为3.5%;中层高磷Ni-P镀层断面厚度约为17.6μm,镍的质量分数约为90.2%,磷的质量分数约为9.8%;Ni-P/Ni-Zn-P三层复合镀层断面总厚度约为40μm,镍的质量分数约为80.7%,锌和磷的质量分数分别为7.6%和11.7%.在Tafel极化曲线中,Ni-P/Ni-Zn-P三层复合镀层的腐蚀电流密度最小,为3.815×10-6 A/cm2,具有更好的耐蚀性.在模拟海水环境(5%NaCl溶液)中腐蚀220 h后,内层、中层组织腐蚀成片,出现孔洞且有点蚀,而Ni-P/Ni-Zn-P三层复合镀层几乎没有腐蚀,只有部分区域出现点蚀,组织较为完整,说明三层镀层较单层、双层镀层具有更好的耐腐蚀性.结论 制备具有电位差的多层阳极Ni-P/Ni-Zn-P复合镀层具有更好的性能,且相较于内层单层、中层双层Ni-P合金镀层,其腐蚀速率也明显降低,耐腐蚀性能更好.  相似文献   

2.
通过改变电镀过程中搅拌速度、电流密度和pH值的大小,在铜基体上制备了Ni-P合金二维梯度镀层.其优点在于镀层中含磷量与硬度在纵向与镀层厚度方向两个方向上均有梯度变化.设计的二维梯度镀层不仅硬度高、与实际工作条件相匹配,且这种二维梯度设计可大大提高镀层的耐磨性与结合强度,从而延长镀层的寿命.对镀层进行400℃热处理,热处理后镀层保持良好的二维梯度,表层硬度可达1080HV,与基体的结合强度也有一定程度的提高.  相似文献   

3.
通过极化曲线、电化学阻抗谱(EIS)电化学实验及均匀腐蚀实验研究了化学镀Ni-Sn-P复合镀层分别在5%H_2SO_4和3.5%NaCl不同腐蚀溶液中的耐腐蚀性,探究了不同Sn颗粒含量对Ni-Sn-P复合镀层耐腐蚀性能的影响。结果表明,当Sn含量为2.0 g/L时,Ni-Sn-P复合镀层的失重最小,其抗腐蚀性能最好。当Sn含量高于2.0 g/L时,镀层失重增大,孔隙率上升,Ni-Sn-P复合镀层的耐腐蚀性能降低。在两种腐蚀溶液中,Ni-Sn-P复合镀层相比于Q235基体和Ni-P镀层具有更正的腐蚀电位,更高的传荷电阻值(R_(ct)),更小的双电层电容值(C_(d1)),更低的失重速率。这说明Ni-Sn-P复合镀层在不同酸性的腐蚀介质中的耐蚀性比Ni-P镀层及基体的显著增强。  相似文献   

4.
杨建桥  梁博 《腐蚀与防护》2008,29(3):147-148
通过在弹簧钢表面预镀铜,改进了弹簧钢表面复合电镀CrSiC镀层的结合性能.同时研究了电流密度、温度以及碳化硅微粒的粒度和浓度等工艺参数对镀层性能的影响.确定了复合镀的最佳工艺为:粒度为40 um的碳化硅35g/L,电镀温度45℃,电流密度30 A/dm2.  相似文献   

5.
镁合金化学镀电镀复合镀层的制备   总被引:2,自引:2,他引:0  
镁合金具有高的比强度和比刚度、电磁屏蔽性、减震性等优点,广泛应用于航空航天、汽车、电子通讯等领域.然而,由于镁合金的化学活性较高,其耐蚀性能较差,限制了它们的应用.通过改进的镁合金加工工艺可以提高镁合金耐蚀性.另外1种提高镁合金耐蚀性的有效手段就是对镁合金进行表面处理,如化学转化膜、电镀等.这些处理得到的涂层耐蚀性虽然有了很大的提高,但是在长时间处于腐蚀环境中,也容易被腐蚀,因此,研究1种复合镀层来更进一步提高耐蚀性,可以提高镁合金的应用.通过采用以硫酸镍为主盐对镀层进行化学镀镍,在化学镀层基础上电镀锌镍合金,并对化学镀和电镀配方进行优化,得到的复合镀层硬度高、结构致密、光泽性好,在5%的NaCl溶液盐雾试验中,连续喷雾96h无任何腐蚀现象,耐蚀性得到显著的提高.  相似文献   

6.
金辉  陈立佳  王一雍  王璐 《表面技术》2017,46(10):115-119
目的提高Ni-Co-CeO_2纳米复合镀层的显微硬度及耐腐蚀性能。方法利用超声技术,采用电沉积方法制备Ni-Co-CeO_2纳米复合镀层。通过正交实验方法,对Ni~(2+)、Co~(2+)及纳米颗粒共沉积工艺实验进行研究,以显微维氏硬度作为考察指标,通过极差分析确定电沉积的最佳工艺条件,利用极化曲线研究纳米复合镀层在3.5%NaC l水溶液中的耐腐蚀性能。通过XRD分析纳米复合镀层的相组成,采用SEM、EDAX研究纳米复合镀层的微观形貌和元素组成。结果通过超声场的超声空化作用,将纳米稀土CeO_2弥散分布于镀层中,使镀层晶粒细化,镀层硬度由264.34HV上升到486.82HV,同时镀层的耐蚀性能也有所提高,自腐蚀电流密度由6.305μA/cm~2减小至2.012μA/cm~2。结论由正交实验结果得出,在超声功率为160 W的实验条件下,制备镀层的最佳工艺条件为:镀液温度55℃,电流密度2 A/dm~2,纳米稀土CeO_2加入量1 g/L,pH值5。最佳工艺条件下制备的镀层表面致密均匀,硬度和耐腐蚀性均有明显提高。  相似文献   

7.
采用粉末冶金法制备SiCP/Cu复合材料,利用Axio Vert.A1金相显微镜、HB-3000B硬度计、MFT-4000多功能表面性能试验仪、M-2000磨损试验仪和扫描电镜研究了烧结温度和增强体含量对该复合材料金相组织、硬度以及其摩擦磨损性能的影响。结果表明:Si CP/Cu复合材料的最佳烧结温度850℃,保温时间2h;随Si CP含量增加,其硬度和摩擦系数以及耐磨性都有所增大和改进,Si CP含量为7%时为最佳,硬度达到95.7HRC,摩擦系数0.18,磨损率7.9%。  相似文献   

8.
针对单一纳米颗粒电刷镀镀层综合性能存在的不足,利用电刷镀技术在45钢基材上制备含纳米WC和PTFE的镍基复合镀层。采用扫描电子显微镜观察电刷镀复合镀层的表面形貌和显微结构,球盘式摩擦磨损试验机测试其干摩擦条件下摩擦磨损性能,在pH=4浓度为0.05mmol/L的硫酸溶液中进行耐腐蚀性试验。结果表明:在镀液中添加不同含量纳米粒子,可以不同程度填补粒子之间的空缺,使镀层表面平整、光滑;含纳米WC和PTFE镍基复合镀层的耐磨损和耐腐蚀性能强于纯镍基镀层和45钢基体,这是由于纳米粒子细晶强化和弥散强化所致;当含1.5g/L纳米WC与7g/L纳米PTFE乳液的复合镀层耐磨损性能最佳;含1g/L纳米WC与5g/L纳米PTFE复合镀层的耐腐蚀性能较纯镍基复合镀层提高一倍;45钢的磨损机制是粘着磨损,纯镍基镀层的磨损机制是剥层磨损,纳米WC/PTFE镍基复合镀层的磨损机制是磨粒磨损。  相似文献   

9.
为了得到一种制备简便、耐腐蚀性能优良的用于舰船腐蚀防护的金属镀层,利用电刷镀技术在45钢上制备出了Ni-石墨烯复合镀层,采用扫描电镜(SEM)、能谱仪(EDS)、原子力显微镜(AFM)、Raman光谱仪对石墨烯片层和镀层微观形貌进行了表征,采用电化学实验和浸泡试验对Ni-石墨烯复合镀层的耐腐蚀性能进行了研究。结果表明:石墨烯片层进入了Ni-石墨烯复合镀层;相比Ni镀层,Ni-石墨烯复合镀层质量更优;在电化学实验和浸泡试验中,发现Ni-石墨烯复合镀层与Ni镀层相比,前者的腐蚀电位较后者正移了70mV,前者的自腐蚀电流密度仅为后者的0.34倍,前者的电荷转移电阻为后者的3.1倍;浸泡168 h后,Ni-石墨烯复合镀层的失重量仅为Ni镀层的0.47倍,说明Ni-石墨烯复合镀层的耐腐蚀性能明显增强。  相似文献   

10.
为提高45钢基体材料的耐腐蚀性能,采用电化学法与氟硅烷修饰相结合的方式在45钢基体表面制备超疏水Ni-P-Al2O3纳米复合镀层,并对镀层的表面形貌、晶相结构、表面粗糙度、润湿性及耐蚀性能进行了研究。结果表明:采用电沉积法制备的Ni-P-Al2O3镀层表面均匀、致密,且无明显气孔缺陷,接触角测试表明其表面达到了超疏水状态,而经电化学加工后,镀层表面形成不规则的微凹坑结构,表面粗糙度值明显增大。经电化学测试,与普通Ni-P-Al2O3镀层相比,超疏水Ni-P-Al2O3镀层的腐蚀电流密度、腐蚀速率均更小,表现出优异的耐腐蚀性能。  相似文献   

11.
以镀层硬度和镀层外观为指标,研究电流密度、镀液中WC的含量、pH值、沉积温度对考察指标的影响.利用正交试验确定了电沉积最佳工艺条件:在超声振荡下,控制电流密度为7 A/cm2,施镀温度50℃,镀液中WC的含量为20 g/L,镀液pH值为5.0时,镀层硬度和镀层外观最佳,同时对Ni-W-B镀层、Ni-W-B-WC镀层的硬度、抗高温氧化性、耐腐蚀性能、表面形貌、镀层结构与成分等进行了测试.结果表明,Ni-W-B-WC复合镀层的综合性能要高于Ni-W-B合金镀层.  相似文献   

12.
为探究金刚石固结磨料研磨盘的复合电沉积制备工艺,对Ni–金刚石复合镀层制备工艺及其性能进行了研究。通过扫描电镜、显微硬度计、摩擦磨损试验机分析研究镀液金刚石浓度、电流密度、温度、沉积时间对复合镀层质量的影响。经试验得到最佳工艺参数:金刚石浓度40g/L,电流密度3A/dm2,温度50℃,沉积时间90min。经检测Ni–金刚石复合镀层表面平整,且金刚石粉末沉积均匀,复合镀层的耐磨性能相较于传统的镍层明显提高。  相似文献   

13.
以长效自润滑耐磨、耐蚀复合镀层制备技术,采用45#钢为基体材料、Ni-B为基底合金、Ni-W-P为基质合金、添加耐磨人造金刚石微粒和固体润滑剂(CF)n微粒,镀制Ni-B和Ni-W-P/金刚石-(CF)n双层复合镀层。试验结果表明:该工艺得到的Ni-B和Ni-W-P/金刚石-(CF)n双层复合镀层表面光亮,质感均匀,粗糙度为Ra0.2;镀层结合力良好;耐蚀性优良;经过相同次数磨损试验,磨损量仅为未镀试件的21.2%。  相似文献   

14.
研究了新型的代铬合金镀层Ni-Fe-W-P-S进行了耐腐蚀性能。结果表明:在NaCl体系中代铬镀层的耐蚀性是铬层的1.7倍、镍层的5.2倍;在H2SO4体系中,代铬镀层的耐蚀性是铬层的1.4倍、镍层的2.7倍.用扫描电镜(SEM)、X射线衍射及光电子能进(XPS)等的分析表明,基体组织为非晶结构是代铬镀层优异耐腐蚀性的主要原因.  相似文献   

15.
采用复合电镀技术在黄铜基体上制备Ni-cBN复合镀层;研究添加和未添加CTAB界面活性剂、镀浴pH值、电流密度、镀浴中cBN微粉浓度、搅拌速度等参数对复合镀层微观组织、显微硬度和耐磨性的影响。结果表明:添加CTAB能显著提高复合镀层耐磨性,并且随着镀层cBN共析量和分散性的增加复合镀层的耐磨性提高;适宜的工艺条件如下:CTAB添加量为0.15 g/L,镀浴pH值为3,电流密度为4 A/dm2,搅拌速度为550 r/min,镀浴中cBN浓度为2.5 g/L。统计分析结果表明:复合电镀参数间相互影响很大,未添加CTAB时,电流密度与搅拌速度相互影响最显著;添加CTAB后,电流密度与pH值的相互影响、镀浴中cBN微粉含量与搅拌速度的相互影响最显著。  相似文献   

16.
脉冲电镀Ni-SiC纳米复合镀层工艺与微观形貌   总被引:1,自引:0,他引:1  
采用脉冲电镀法制备了Ni-SiC(纳米)复合镀层,研究了脉冲参数对镀层中纳米颗粒含量和镀层显微硬度的影响.利用扫描电子显微镜和X射线衍射仪分析了镀层的显微形貌及纳米复合镀层的相组成.用显微硬度计测试了镀层的显微硬度.结果表明,脉冲电镀能获得晶粒度细小、致密、光亮、均匀且高硬度的复合镀层.  相似文献   

17.
综述了各种高硬度耐腐蚀的纳米复合镀层的研究进展情况。介绍了电流方式、温度、分散剂、搅拌方式等影响镀层性能的主要工艺因素在复合电镀中的应用。介绍了具有代表性的共沉积机理。指出目前在纳米复合电镀技术研究方面的课题。  相似文献   

18.
纳米TiO2-Ni-P复合镀层的制备工艺及性能研究   总被引:1,自引:0,他引:1  
李志林  王波  关海鹰 《腐蚀与防护》2006,27(8):394-396,390
纳米颗粒加入镀液可提高镀层的硬度,并可能影响镀层的耐蚀性能。用化学沉积法制备了纳米TiO2-Ni-P复合镀层。研究了pH值、温度对沉积速度的影响,及表面活性剂种类对镀层硬度的影响,并得出优化配方。镀态和不同温度热处理后的复合镀层的硬度都明显地高于Ni-P合金镀层。用化学法测得了镀层中的TiO2颗粒的含量为2.14%。镀层在400℃下热处理1h后,XRD分析发现镀层结构由非晶态转变为晶态,并出现了强化相Ni3P,其镀层硬度高达HV1100。在3.5%NaCl溶液中测定了合金镀层与纳米复合镀层的自腐蚀电位,发现二者的值相近,且都高于铁基体。  相似文献   

19.
以不锈钢为基体材料,Ni-W-P为基质合金,添加耐磨微粒碳化硅(SiC)和六方氮化硼(-αBN)固体润滑微粒,在抛光轮工作面镀制Ni-W-P/SiC BN多元复合镀层。该工艺得到的Ni-W-P/SiC BN多元复合镀层表面光亮、质感均匀、镀层结合力良好、耐蚀性优良。经过相同次数磨损试验,Ni-W-P/SiC BN热处理镀层的耐磨性能是0Cr18Ni9Ti不锈钢的5.22倍。  相似文献   

20.
(Ni-P)-SiC-PTFE化学复合镀层摩擦性能研究   总被引:2,自引:0,他引:2  
高红霞  商全义  张贵州  高学敏 《表面技术》2003,32(2):31-32,35
通过磨损试验及表面显微观察 ,测试并分析了 (Ni P) SiC PTFE化学复合镀层的耐磨性、自润滑性等摩擦性能。实验结果表明 :(Ni P) SiC PTFE复合镀层的耐磨性、自润滑性高于化学镀 (Ni P)镀层。该复合镀层可用于高性能塑料模具的表面处理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号