首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2-丁烯是石油裂解的产物之一,也是大分子组分燃料燃烧的中间产物,在化工及燃烧领域起着至关重 要的作用。以点火延迟时间和重要组分为简化目标,交叉使用直接关系图法(directedrelationgraphmethod, DRG)类算法对其详细机理进行简化,得到了包含71种组分和430步基元反应的简化机理。以 层 流 火 焰 速 度、组分摩尔分数等参数为基础,对简化机理进行了误差分析,并通过对比点火延迟实验数据,发现简化机理 和实际有很好的吻合,验证了简化机理的有效性。最后结合敏感度分析,得到了2-丁烯的基本反应路径。  相似文献   

2.
选取MD9D、癸酸甲酯(MD)和正庚烷三组分作为生物柴油替代混合物,建立详细化学动力学反应机理。在此基础上,通过误差传递直接关系图法(DRGEP)、同分异构体简化法(Isomer Lumping)、基于DRGEP敏感性分析法3种简化方法耦合的方式对详细化学动力学反应机理进行简化,构建一个简化机理,利用CHEMKIN-PRO软件对简化机理进行模拟计算,并与试验结果进行对比分析。结果表明:简化机理对生物柴油燃烧过程中着火延迟期和重要中间产物CO、CO_2、CH_4、C_2H_4、C_3H_6等有较好的预测能力;在750~900K的低温阶段能再现生物柴油燃烧过程中的负温度系数现象,并且能够在低温燃烧时预测早期CO_2的生成。  相似文献   

3.
采用带误差传播的直接关系图法、全物种敏感性分析和人工神经网络(ANN)联合方法,以点火延迟时间和CO摩尔分数为优化目标,通过对甲烷富氧燃烧详细机理USC mech2.0的简化和优化,提出了基于人工神经网络的甲烷富氧燃烧优化机理(ANN-OMOC)。甲烷富氧燃烧模拟计算和对比分析的结果表明:相比于甲烷富氧燃烧简化机理FSSA的预测误差,优化机理ANN-OMOC对点火延迟时间、层流火焰速度的预测误差分别从2.53%、24.38%降到0.50%、14.41%;与甲烷富氧燃烧的简化机理DRGEP和FSSA相比,优化机理ANN-OMOC对点火延迟时间、OH摩尔分数峰值和CO摩尔分数峰值的预测结果最佳,其相对误差均在10%以下。  相似文献   

4.
采用基于误差的直接关系图法(DRGEP)、敏感性分析法以及同分异构聚合法对二甲醚/聚甲氧基二甲醚-3(DME/DMM3)的联合详细化学反应机理进行简化,最终构建了一个包括65个组分和308个反应方程式的DME/DMM3简化化学动力学机理.为了验证其可靠性,分别用二甲醚(DME)和聚甲氧基二甲醚-3(DMM3)详细机理及试验数据与DME/DMM3简化机理计算得到的着火延迟、层流火焰燃烧速度和组分摩尔分数等进行了比较,并分析了DME/DMM3反应路径.最后验证了柴油机转速为1 600 r/min,当量比为0.18和0.34,燃料DME与DMM3体积配比为1∶9时的仿真与试验的缸内压力和放热率以及CO、CO2、NOx和HC排放物.结果表明:该DME/DMM3简化机理的着火延迟时间、层流火焰燃烧速度及射流搅拌反应器(JSR)中组分摩尔分数、缸内压力、放热率以及CO、CO2、NO...  相似文献   

5.
于笑  李晶 《内燃机学报》2021,39(1):67-73
采用定向关联图误差传播敏感度分析法(DRGEPSA)、同分异构体合并和峰值浓度分析法对正丁醚和正辛醇的详细机理进行简化,并将简化后的正丁醚和正辛醇机理合并,获得了包含117个组分和601个基元反应的骨架机理.利用正丁醚和正辛醇详细机理的着火延迟、正丁醚层流火焰速度的试验数据和正辛醇在射流搅拌反应器(JSR)中组分摩尔浓...  相似文献   

6.
燃烧基元反应速率系数存在着一定的不确定性,会影响各基元反应对燃烧特性参数的贡献,传统图解简化法统计基元反应中各组分贡献大小也会受此影响,使组分之间的耦合强度存在着一定的不确定性.为此拟开展基于燃烧反应动力学速率系数不确定性下的机理简化和优化.首先在速率系数不确定性参数空间内均匀采集1 000个可能性详细机理样本,然后应用直接关系图解法(DRG)对机理样本进行简化,并对排除的组分进行统计和排序,最终根据概率大小削减模型;其次应用全局敏感性方法判断其重要反应机理,对其中较为灵敏的反应进一步优化,最终得到可以预测相对准确的简化机理.  相似文献   

7.
针对目前缺乏对燃烧反应动力学机理中组分重要性判别的诊断方法,本文提出可准确量化组分重要性的半全局敏感性分析方法,并应用此方法简化USCMech II、Jet Sur F和DME机理,得到的简化机理可分别精确预测乙烯、正庚烷和二甲醚的点火延迟时间.基于组分半全局敏感性方法不仅可以精确评价组分的重要性程度,还可以分辨组分的正负贡献;采用此方法消除不重要的组分,最终得到32组分的乙烯燃烧机理、56组分的正庚烷燃烧机理和32组分的二甲醚氧化机理,并且这3个简化机理也比通过DRG和DRGEP方法得到的简化机理更加紧凑.  相似文献   

8.
采用正庚烷/甲苯/环己烷作为柴油多组分替代燃料,构建了一个包含103种组分和200个反应的化学动力学简化机理,简化方法包括直接关系图法、敏感性分析法和反应速率分析法.在较宽边界条件下,对燃烧滞燃期及重要组分浓度进行验证,计算结果与激波管、射流搅拌反应器等试验数据吻合较好.结果表明:除传统C2+C4及C3+C3生成苯环(A1)的反应,环己烷通过直接脱氢生成A1的反应是另一重要路径.采用80%正庚烷+10%甲苯+10%环己烷(质量分数)的多组分替代混合物,可以较好模拟柴油燃烧反应动力学过程.  相似文献   

9.
正庚烷对冲扩散火焰中多环芳烃形成机理的简化   总被引:1,自引:1,他引:1  
使用敏感性分析对正庚烷对冲扩散燃烧火焰中多环芳烃生成的详细反应机理(包括108种组分、572个基元反应)进行简化,得到了可与CFD多维模型耦合计算的简化机理,该机理包括56种组分、83个基元反应.简化机理和详细机理的计算结果非常吻合,表明得到的简化机理能够精确地描述正庚烷对冲扩散火焰的燃烧特性,并且能够定量预测多环芳烃(例如苯、萘、菲、芘等)的生成.  相似文献   

10.
基于Senkin模型,应用自编化学反应机理简化程序,结合Kinalc和Mechmod开源程序,发展了详细化学反应机理的简化与验证方法.以电站锅炉燃烧的计算流体力学(CFD)数值模拟为应用背景,建立了考虑C/H/O/N/S/Cl/K/Na元素的详细化学反应机理(115组分,1,342基元反应),并运用此方法得到简化反应机理(28组分,20反应).验证结果表明,该简化机理在锅炉运行的主要参数变化范围内(温度T=1,100~1,500,℃,过量空气系数λ=0.8~1.2)具有较好的准确性和较高的计算效率,可应用于锅炉燃烧的CFD计算.  相似文献   

11.
通过耦合反应路径分析、路径通量分析(PFA)、同分异构体整合和敏感性分析(SA)共4种简化方法,对一个以生物柴油真实组分中5种典型长链甲基酯为燃油组分的详细反应机理(5 027个组分和19 988个反应)进行简化,构建了一个包含183个组分和748个反应的简化机理.通过与原始机理进行着火延迟、瞬时温度、基于完全搅拌反应器(PSR)燃烧状态的比较以及与基于激波管的着火延迟试验数据、射流搅拌反应器(JSR)中重要组分摩尔分数试验数据的比较,对简化机理进行了全面验证.结果表明:笔者采取的综合性简化方法能够完整保留原始机理的关键反应特性,得到的简化机理能够较好地预测生物柴油的燃烧特性和排放特性.  相似文献   

12.
为减少焦炉煤气燃烧室数值模拟的计算时长,基于直接关系图法和敏感性分析法对GRI Mech 3.0详细机理进行简化,通过理想反应器计算和二维数值模拟验证简化机理的有效性。结果表明:在较宽的参数范围内(初始温度300~800 K,压力0.1~2 MPa和当量比0.5~1.4),含25组分、134步反应的简化机理可以精确计算焦炉煤气的层流火焰传播速度、点火延迟时间、火焰温度以及中间燃烧组分;得到的简化机理能够有效模拟射流火焰的反应物消耗、产物生成、温度以及中间产物分布等特征,在保证计算精度的前提下,大幅减少了数值模拟的计算时长。  相似文献   

13.
正庚烷部分预混燃烧下多环芳烃生成的简化机理   总被引:1,自引:1,他引:0  
采用反应流与敏感性分析方法对小分子烃类燃料预混燃烧下多环芳烃生成的详细机理(101种组分,544个基元反应)进行了简化,得到了包括52种组分,83个基元反应的简化机理.采用该简化机理对乙烷预混燃烧下多环芳烃的生成规律进行了数值计算.结果表明,采用该简化机理计算得到的反应物与部分生成物摩尔分数的变化趋势与实验值基本吻合;在该简化机理上加入正庚烷分解和氧化的主要反应(27种组分,36个基元反应),构成了庚烷火焰中多环芳烃生成的简化机理(62种组分,1 19个基元反应);同时对该简化机理在正庚烷部分预混燃烧下多环芳烃的生成规律进行了数值计算,结果表明,采用该简化机理进行计算时所得到的温度分布、主要反应物与部分生成物的摩尔分数的变化趋势与实验值基本吻合.  相似文献   

14.
在对美国加利福尼亚大学燃烧实验室给出的氮氧化物(NOx)生成机理(49种组分,277个基元反应)进行敏感性分析后,提取出对NOx生成的重要反应,加入到正庚烷燃烧简化机理(29种组分,52个基元反应)中,创建了一个新的包含NOx的正庚烷燃烧化学动力学简化机理(40种组分,72个基元反应)。最后将得到的新机理与Patel正庚烷燃烧机理的模拟结果进行对比分析,以及通过与计算流体动力学CFD软件耦合的模拟结果对比分析,验证了该机理的有效性和准确性。  相似文献   

15.
为了研究自相关自适应化学(CO-DAC)在湍流燃烧中的特性,计算了湍流非预混射流火焰Sandia FlameD的大涡模拟,使用了GRI-Mech 3.0详细化学反应机理以及CO-DAC简化方法.计算结果与实验值的对比表明,使用详细化学反应机理和CO-DAC机理简化,可以有效捕捉湍流火焰瞬时结构;可以根据燃烧场的特性,自适应地减少化学反应计算量,有效提高计算速度;可以准确模拟火焰的速度、温度分布特性;可以准确模拟火焰中重要中间组分和自由基的组分分布.  相似文献   

16.
首先基于2,5-二甲基呋喃(2,5-dimethylfuran,DMF)详细机理,运用峰值浓度分析法、反应路径分析法、敏感性分析法和反应速率分析法进行机理简化,构建了包含95种组分和352个反应的DMF简化动力学机理,并对激波管滞燃期和重要燃烧产物浓度进行验证。在此基础上,采用"解耦"思想耦合了柴油多组分替代物(正庚烷/甲苯/正己烯)简化机理,最终构建了一个包含123种组分和394个反应的柴油/DMF双燃料简化机理。研究结果表明:在较宽的当量比(0.5~2.0)和初始压力(0.1~8.0MPa)边界条件下,双燃料简化机理对滞燃期、射流搅拌反应器中物种摩尔分数、层流火焰速度等基础燃烧数据及零维单区内燃机模型组分生成规律吻合性较好。  相似文献   

17.
构建了一个由正庚烷、甲苯和环己烷组成,并加入正庚烷与甲苯的交叉反应,三组分柴油表征燃料的详细化学动力学机理模型,包含1 171种物质、4 580个基元反应.基于着火时刻对于均质充量压燃(HCCI)燃烧的重要性,以着火点为主要衡量标准,采用单区燃烧模型,以不同比例的三组分表征燃料详细化学反应动力学机理模拟HCCI燃烧的燃烧始点,根据HCCI发动机试验数据,确定了三组分机理的最佳组分质量比为8∶1∶1(正庚烷∶甲苯∶环己烷).还对单组分(正庚烷)、最佳比例的双组分(正庚烷、甲苯)和最佳比例的三组分机理进行了比较验证,对3种机理模拟得到的着火滞燃期和放热率的结果进行对比,详细分析了环己烷对表征燃料滞燃期的调整作用,以及交叉反应的加入对表征燃料的影响.结果表明:新的柴油三组分详细机理可以更为准确地描述柴油HCCI着火时刻.  相似文献   

18.
利用耦合路径通量分析和敏感性分析的方法对Jet-A型航空煤油在航空发动机燃烧室工况下的燃烧反应机理进行了简化。选用POSF-4658的燃烧反应机理(1607组分、6633机理)替代Jet-A型航空煤油在航空发动机燃烧室工况下的详细的燃烧反应机理。将燃烧室工况作为简化过程的初始条件,分析得到了替代Jet-A的简化机理(122组分、331机理)。通过对替代Jet-A简化反应机理、Jet-A详细反应机理、C_(13)H_(28)机理、五步机理与实验值的比较分析可发现,得到的替代Jet-A的简化机理能够反映Jet-A型燃料主要的燃烧特性。利用国际上常用的Jet-A机理计算的绝热火焰温度、点火延迟时间及层流火焰速度与本研究提出的简化的计算值进行比较。结果表明,本研究提出的简化机理具有较高的精确度,简化机理计算得到的点火延迟时间、绝热火焰温度、层流火焰速度与详细机理计算结果的平均相对误差分别为1.2%、3.3%、3.7%。替代Jet-A简化反应机理提供了可用于航空发动机燃烧室模拟仿真的化学反应动力学模型。  相似文献   

19.
结合敏感性分析和反应速率分析提出了一种可用于发动机HCCI燃烧模拟的简化DME反应机理,该模型由28个组分和32个基元反应组成.通过与详细机理的对比分析,验证该模型可以正确解释DME燃烧过程的特点,能够在反应条件变化时和详细机理相一致.在添加适当反应的情况下,该模型可用于预测NOx的排放,为多维模拟HCCI燃烧过程提供了一种可行的途径.  相似文献   

20.
通过对3个非预混火焰的详细数值模拟,获得了一个全新的温度和折射率之间的状态关系.利用该状态关系能直接从折射率计算温度,而不需要当地组分信息.利用全息干涉实验和数值模拟结果,对4个不同高度的横断面的温度计算表明,这个状态关系将空气组分假设带来的误差从48.8%降低到4%以下.分析表明,该状态关系具有应用于化学当量比较大的预混合部分预混火焰的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号