首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高铝矾土-硅粉氮化合成SiAlON的过程研究   总被引:6,自引:2,他引:4  
侯新梅  钟香崇 《耐火材料》2005,39(5):333-336
分别以w(Al2O3)为68.08%和45.56%的两种高铝矾土及硅粉为原料,按合成SiAlON的理论配比配料(Si粉过量5%),成型后在流动N2(流量为0.06~0.1m3.h-1)中进行热重分析,同时测定试样在不同温度(900~1500℃)保温6h后的质量变化,并分析氮化后试样的物相变化,从而探讨该试样的氮化过程及其机理。结果表明,高铝矾土-硅粉试样在流动N2中的氮化反应过程可大致分为3个阶段:1)Si粉氮化阶段(900~1200℃),Si粉氮化生成Si3N4和Si2N2O;2)SiAlON形成阶段(1300~1400℃),生成O’-SiAlON和β-SiAlON;3)β-SiAlON的生长发育阶段(1450~1500℃),部分O’-SiAlON转化为β-SiAlON,Al2O3在β-SiAlON中的固溶度增加。  相似文献   

2.
《粉煤灰》2015,(6)
以锆英石和粉煤灰为原料,活性炭为还原剂,采用碳热还原氮化法在1 450℃保温6h条件下合成Zr O2/(β+O)-Sialon复合材料。研究了配炭量对制备试样物相组成的影响,并分析了其合成过程。研究结果表明,按锆英石:粉煤灰:活性炭的质量比为49:100:80进行配料,可以合成主晶相为m-ZrO_2、β-Sialon(z=2)和O-Sialon(x=0.17)的复合材料;增加试样中的配炭量,有利于锆英石和粉煤灰中莫来石的分解及复合材料的生成;ZrO_2/(β+O)-Sialon复合材料的合成过程包括锆英石和莫来石的分解,以及m-Zr O_2、β-Sialon和O-Sialon的生成过程。  相似文献   

3.
为了研究高温条件下Al2O3-C体系中氮化硅铁的状态,以闪速燃烧合成氮化硅铁、炭黑、刚玉粉为原料,将试样在高温炉中分别加热至1 450、1 500、1 600℃保温5 h,急速水冷后,对其进行XRD和显微结构分析。结果表明:1 450℃烧后试样的物相包含β-Si3N4、α-Si3N4、α-Al2O3和Fe3Si;1 500℃烧后试样的物相为β-Si3N4、SiC、α-Al2O3和Fe3Si;1 600℃烧后试样中Si3N4大部分转变为SiC,其他物相未发生变化。在升温过程中,氮化硅逐渐转化为碳化硅,材料结构致密。  相似文献   

4.
低品位铝土矿合成β-SiAlON的相变过程研究   总被引:4,自引:4,他引:4  
采用XRD、SEM和EDS等手段 ,研究了低品位铝土矿碳热还原氮化合成SiAlON过程的相变。结果表明 :130 0℃开始氮化 ,形成Si2 N2 O和X SiAlON ;14 0 0℃开始形成 β SiAlON (z =3) ,X相明显增加 ;14 5 0℃时 ,β SiAlON (z =3)成为主要的氮化产物 ,并与少量的Si3 N4和刚玉并存 ;15 0 0℃开始形成 15R ,同时 ,β SiAlON的z值开始由 3变为 4 ;15 5 0℃时 ,15R和 β SiAlON成为主要物相 ,同时含有部分刚玉相和Si3 N4相。 14 5 0℃时 ,由低品位铝土矿合成纯净的 β SiAlON复合少量刚玉相粉体材料的最佳保温时间是 6~ 9h ,时间过短则含有较多的X相 ;时间过长则发生过量氮化 ,形成部分 15R和少量Si3 N4。  相似文献   

5.
以菱镁石和煅烧铝矾土为主要原料,焦炭为还原剂,在氮气中采用碳热还原氮化法合成MgAl2O4-SiAlON材料,并利用XRD研究了试样在1 350、1 400、1 500和1 600 ℃下分别保温3 h处理后产物的物相变化及配碳量(分别为理论配碳量、过量50%和过量100%)对反应产物的影响.结果表明:(1)不同温度处理后的反应产物均存在MgAl2O4相和SiAlON相,增加配碳量有利于SiAlON相的生成.本试验确定合成MgAl2O4-SiAlON的适宜工艺条件为:氮化温度1 500 ℃,配碳过量50%.(2)配碳过量50%时,在1 350和1 400 ℃处理后产物中含有MgAl2O4、α-Al2O3和MgAl2Si4O6N4相,1 500 ℃处理后为MgAl2O4和β-SiAlON,1 600℃处理后为MgAl2O4和Mg1.25Si1.25Al1.25O3N3.  相似文献   

6.
选用低品位的铝土矿(Al2O3含量为68wt%)利用复合还原剂碳/硅、碳/铝、铝/硅还原氮化合成β-Sialon.计算试样烧成后的质量变化率,利用检测仪器XRD、SEM、EDS,化学分析法,研究了三种复合还原剂还原氮化低品位铝土矿合成β-Sialon的反应过程、显微结构和相对含量.结果表明:利用三种复合还原剂还原氮化合成β-Sialon材料的机理、生成β-Sialon的相对含量、结晶形貌、生产成本均不同;反应基本结束的温度均为1500℃,生成z值为3左右β-Sialon;工业生产中利用碳/硅复合还原氮化低品位铝土矿合成β-Sialon材料较理想.  相似文献   

7.
首先对β-SiAlON及其复合材料的合成试验进行了热力学分析,在不同温度、不同z值条件下采用还原氮化法制备了β-SiAlON以及β-SiAlON-SiC复合材料;XRD和SEM分析表明,不管是以Si、Al、Al2O3还是以Si、Al2O3为原料,在氮气气氛下用Si3N4埋粉,在常温常压下都可以合成较纯的βSiAlON。通过改变z值和控制烧结温度等试验发现,当z=0.6、T=1723K时能合成较纯的β-SiAlON,但随着z值的增加,会有少量的O’SiAlON杂质相生成;通过SEM分析表明,在一定温度下,控制适宜的工艺条件,随着z值的增加,β-SiAlON晶粒间开始析出部分晶须,并逐渐转变为明显交织的棒状结构,从而提高材料的断裂韧性。  相似文献   

8.
以SiC颗粒、Si粉、Al粉和活性α-Al2O3粉为原料,以Fe为催化剂,采用原位催化氮化法制备了β-SiAlON(z=3)结合SiC材料。研究了氮化温度(分别为1 350、1 400和1 450℃)和Fe加入量(分别为Si粉质量的1%、2%和3%)对合成材料的物相组成、显微结构、显气孔率、体积密度和高温抗折强度的影响。结果表明:氮化温度以1 400℃为佳,Fe加入量以Si粉质量的1%为佳;加入Si粉质量的1%的Fe、在1 400℃保温3 h氮化制备的试样中生成的β-SiAlON晶须直径较为均匀,试样的氮化程度、致密度和高温抗折强度均较大。  相似文献   

9.
为了降低合成成本,以低能耗、低成本的天然锆英石、工业氧化铝和焦炭为原料,采用碳热还原氮化法合成了ZrN-SiAION复相材料.根据反应方程式3Al2O3+ 6ZrSiO4+ 27C+ 8N2=6ZrN+ 2Si3Al3O3N5+27CO设计锆英石和工业氧化铝的原料配比,改变还原剂焦炭的配入质量分数(分别为理论用量、过量5%、过量10%、过量20%),经球磨混合、成型、干燥后,在流动氮气中分别于1 500、1 550、1 600℃保温4h合成,自然冷却后分析合成产物的相组成和显微结构.结果表明:1)在合成温度为1 500℃时,配碳量的增加有助于ZrN的生成;2)在合成温度为1 550℃时,配炭量过量20%的试样中有15R型的多型体SiAlON(即SiAl4 O2 N4)生成;3)在合成温度为1600℃时,配碳量为理论量和过量5%的试样中的多型体SiAlON为15R型,而配碳过量10%和20%的试样中的多型体SiAlON则主要为12H型(即SiAl5O2N5).  相似文献   

10.
孟录  张海军  钟香崇 《耐火材料》2006,40(4):260-264
以Si粉、Al粉、Al2O3粉(α型和ρ型)和CaCO3为主要原料,采用高温氮化方法合成了Ca-αSiAlON,并对氮化后的试样进行XRD、SEM以及EDS分析,计算出了各试样中Ca-αSiAlON的相对含量。研究了氮化温度(1500℃和1550℃),保温时间(8h、12h和20h),CaCO3用量(理论用量、过量10%、过量20%),添加剂种类(Y2O3、TiO2、Fe2O3)及加入量(2%、3%、4%),αSi3N4晶种加入量(0、1%、3%、5%),Al2O3种类(α型和ρ型),Si粉和Al粉的用量(理论用量、过量10%)等工艺因素对Ca-αSiAlON合成量的影响。结果表明:(1)在1550℃氮化反应12h得到的合成产物中Ca-αSiAlON的相对含量最高,可达72.5%,其他物相为βSiAlON;(2)CaCO3加入量增多能够显著提高产物中Ca-αSiAlON的相对含量;(3)添加剂Y2O3、TiO2、Fe2O3均可促进Ca-αSiAlON的合成,其中Y2O3的促进作用最明显,TiO2次之;(4)αSi3N4晶种的引入能够显著提高Ca-αSiAlON的合成量;(5)Si粉和Al粉的量以及Al2O3种类对Ca-αSiAlON的氮化合成影响不明显;(6)SEM分析结果表明,合成的Ca-αSiAlON发育成柱状晶,长径比在3~10之间。  相似文献   

11.
蔡一非  蒋明学  韩燕 《耐火材料》2007,41(3):217-219
以白刚玉、硅粉、铝粉和α-Al2O3微粉等为原料,在氮化炉中于1460℃原位合成的β-SiAlON-刚玉复合材料,其氮含量(w)为3%,显气孔率为11.8%,体积密度为3.22g.cm-3,耐压强度为106.5MPa。在此基础上,用2%的Fe2O3替代白刚玉,在相同条件下合成的复合材料,其氮含量下降为2.4%,显气孔率和体积密度分别为12.4%和3.21g.cm-3,耐压强度增大为174.5MPa。试样的XRD分析表明,这两个试样的主晶相均为刚玉和z=3的β-SiAlON;未加Fe2O3的试样杂质很少,而加Fe2O3的试样中杂质较多,杂质主要为莫来石,这说明加入的Fe2O3阻碍了材料的氮化。另外,其β-SiAlON相中除了有Si3Al3O3N5外,还有Si4.69Al1.31O1.31N6.69。  相似文献   

12.
为了降低合成成本,以低能耗、低成本的天然锆英石、工业氧化铝和焦炭为原料,采用碳热还原氮化法合成了ZrN-SiAlON复相材料。根据反应方程式3Al2O3+6ZrSiO4+27C+8N 26ZrN+2Si3Al3O3N5+27CO设计锆英石和工业氧化铝的原料配比,改变还原剂焦炭的配入质量分数(分别为理论用量、过量5%、过量10%、过量20%),经球磨混合、成型、干燥后,在流动氮气中分别于1 500、1 550、1 600℃保温4 h合成,自然冷却后分析合成产物的相组成和显微结构。结果表明:1)在合成温度为1 500℃时,配碳量的增加有助于ZrN的生成;2)在合成温度为1 550℃时,配炭量过量20%的试样中有15R型的多型体SiAlON(即SiAl4O2N4)生成;3)在合成温度为1 600℃时,配碳量为理论量和过量5%的试样中的多型体SiAlON为15R型,而配碳过量10%和20%的试样中的多型体SiAlON则主要为12H型(即SiAl5O2N5)。  相似文献   

13.
Si3N4-Al2O3-CaO系材料烧结性能及反应过程研究   总被引:2,自引:1,他引:2  
《耐火材料》2003,37(3):128-132
以氮化硅、活性氧化铝微粉和纯铝酸钙水泥为原料,研究了在焦炭保护情况下,Si3N4-Al2O3-CaO系材料经1500℃、1600℃和1650℃烧成时的烧结性能和物相变化,同时借助SEM、EDX和XRD等手段对其显微结构和反应过程进行了观察和分析.结果表明,该体系材料的烧结性能与试样的组成和烧成温度有关温度由1500℃升至1600℃,试样体积密度增加,显气孔率降低,但升至1650℃时,试样的体积密度反而下降,显气孔率增加;在同一温度下,试样中Si3N4含量增加,体积密度下降.同时,试样在烧成过程中存在质量变化现象1500℃烧成试样均表现为质量增加,当温度升至1600℃和1650℃时,试样质量又由增加变为减小.根据热力学分析推测,试样烧成过程中存在复杂的化学反应,低于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2Si2N2O(s)+1/2N2(g)+3/2C(s)是试样质量增加的主要机理;高于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2SiC(s)+3/2SiO(g)+2N2(g)是引起质量损失的主要机理.XRD分析显示,烧后试样中除存在刚玉和Si3N4相外,在烧成过程中还发生了物相变化1500℃时出现了钙黄长石相,1600℃时钙黄长石又消失,出现了Ca-α-Sia-lon和β-Sialon,温度升至1650℃时,Ca-α-Sialon又消失,β-Sialon却大量出现于部分试样中.因此可以认为,钙黄长石是铝酸钙水泥中CaO与Si3N4表面的SiO2和Al2O3反应形成的,温度升高时,其与Si3N4进一步反应形成Ca-α-Sialon,1650℃时Ca-α-Sialon消失,可能是在该温度下,试样内部的化学反应导致试样组成偏离Ca-α-Sialon相区;而β-Sialon是Si3N4固溶Al2O3反应形成的,其含量取决于试样中Al2O3、Si3N4的含量及烧成温度.  相似文献   

14.
以Fe纳米颗粒为催化剂,采用催化氮化的方法制备氮化硅。结果表明:加入2%的Fe纳米颗粒,1 350℃保温2h催化氮化后,试样中的残余硅含量小于5%,而相同条件下无催化剂的试样中,单质硅的残余率高达50%。催化氮化制得的Si3N4试样中存在大量的晶须状Si3N4,其直径在40~200nm,长度可达几微米至十几微米。Si3N4晶须的生长机理主要为气相--液相--固相机理与固相--液相--气相--固相机理。  相似文献   

15.
TiO2 在煤矸石碳热还原氮化过程中的作用   总被引:4,自引:1,他引:3  
以煤矸石、炭黑为原料,分别加入0、2%、4%、6%、8%、10%、15%和20%的TiO2,组成的不同试样在流动氮气中进行热处理,热处理温度分别是1350 ℃、1400 ℃、1450 ℃、1500 ℃、1550 ℃,保温时间为6 h,测定热处理后试样的质量损失率,借助XRD、SEM和EDS等手段,分析热处理后试样的物相组成、显微结构和微区成分,研究引入TiO2对煤矸石还原氮化的作用.结果表明TiO2的加入有利于煤矸石还原氮化转变成β-SiAlON,并能促进β-SiAlON晶粒的生长发育.这也许是因为TiO2的加入有利于莫来石及SiO2分别还原氮化为X相及Si2N2O,Si2N2O与Al2O3固溶形成O'-SiAlON;最后X相和O'-SiAlON转变成β-SiAlON;多余的TiO2可以被还原氮化为耐火度高、耐磨性好的TiN.TiO2的最佳加入量为4%.  相似文献   

16.
郭艳芹  王永伟 《硅酸盐通报》2013,32(8):1510-1514
分别以复合还原剂碳硅、碳铝还原氮化低品位铝土矿(Al2O3含量为68wt%)制备β-SiAlON.利用XRD、SEM和EDS等检测手段和试样的质量变化率,研究了两种复合还原剂制备β-SiAlON的相变过程、β-SiAlON的相对生成量和微观状态.结果表明:低品位的矾土矿利用复合还原剂可以制造出优良廉价的β-SiAlON材料;碳硅试样的β-SiAlON为O'-SiAlON和Al2O3反应生成;碳铝试样的β-SiAlON为AlN、Si3N4和Al2O3反应生成以及碳直接还原氮化莫来石生成;基本结束的反应温度为1500℃,生成的β-SiAlON为柱状、z值为3左右;复合还原剂碳硅还原氮化制备β-SiAlON相对含量高,结晶形貌好,制备成本低.  相似文献   

17.
利用煤矸石制备复合耐火材料是实现煤矸石高值利用的有效途径之一.以山西平朔煤矸石为研究对象,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别研究了1200~1500 ℃氩气(Ar)和氮气(N2)气氛下煤矸石中矿物质的碳热还原反应情况,并通过变换两种气体通入次序,研究了气氛通入次序对矿物质碳热还原反应的影响.结果显示,只通入Ar时,高温样品中的莫来石在1300 ℃时开始发生碳热反应生成碳硅石(SiC);只通入N2时,莫来石在1300 ℃时发生碳热还原氮化反应生成β-Sialon相(Si5AlON7)和刚玉相(Al2O3);当先通入Ar并停留1 h后通入N2停留2 h时,样品中生成的碳硅石在通入N2后转化为β-Sialon相,而且中间体碳硅石的生成能够明显促进莫来石向β-Sialon相的转化.当煤矸石中碳含量较低时,热处理过程中难以同时生成SiC相和Sialon相.高温下煤矸石样品中β-Sialon相的生成使样品表面的棒状颗粒增多.  相似文献   

18.
粘土还原氮化合成O'-Sialon基复合材料   总被引:7,自引:2,他引:5  
采用高峰土碳热还原氮化合成O’-Sialon基复合材料。结果表明,在一定实验条件下,当烧结温度较低时(1400 ℃),碳热还原的最终产物为O’-Sialon、Si3N4;烧结温度较高时(1500℃),最终产物为O’-Sialon、SiC;温度处于两者之间时(1450℃),O’-Sialon、Si  相似文献   

19.
以粉煤灰(≤74μm)、锆英石(≤44μm)和活性炭为原料,采用碳热还原氮化法在1 550℃保温6 h合成了ZrN-SiAlON复合材料。以加工成的ZrN-SiAlON复合微粉为主原料,加入聚乙烯醇结合剂,分别在1 450、1 500和1 550℃下埋炭粉常压烧结1 h制备ZrN(ZrON)-SiAlON复合陶瓷,研究了烧成温度对复合陶瓷相组成、显微结构和烧结性能的影响。结果表明:1)控制烧成温度可以制备出不同组成的β-SiAlON基复合陶瓷;在1 550℃保温1 h制备的复合陶瓷的主晶相为ZrN、ZrON和β-SiAlON(z=2,Si4Al2O2N6);2)从不同温度烧后试样的微观结构中均能观察到ZrN(ZrON)、β-SiAlON和一种铁硅系化合物存在,且ZrN(ZrON)颗粒均匀地分布于β-SiAlON基质中;3)提高烧成温度会使复合陶瓷的收缩率增大,当烧成温度由1 450℃升至1 550℃时,试样的体积收缩率由19.4%增加至40.3%。  相似文献   

20.
烧结助剂对反应烧结氮化硅陶瓷的影响   总被引:2,自引:0,他引:2  
以Si粉和C粉为主要原料 ,在氮气流量为1.2L·min- 1,氮化温度为 1380℃ ,保温时间为 2 0h的条件下 ,研究了分别以 10wt%的MgO、Al、Al2 O3和Al2 O3+Y2 O3粉为烧结助剂对反应烧结氮化硅陶瓷的影响。结果表明 :以MgO粉作烧结助剂时 ,试样的主要成分是MgSiO3,另外还有Si2 N2 O ,但没有Si3N4 生成 ;以Al粉作烧结助剂时 ,试样的主要成分是SiO2 ,仅有少量Si3N4 存在 ;以Al2 O3作烧结助剂时 ,试样的主要成分是β Si3N4 和α Si3N4 ;以 2wt%Al2 O3+8wt%Y2 O3作烧结助剂时 ,试样的主要成分为 β Si3N4 ,同时含有少量α Si3N4 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号