首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of mechanical deformation on the polarized Raman spectra of a silk monofilament of the silkworm Bombyx mori has been studied in order to detect tensile stress-induced changes of the fibroin conformation and reorientation up to the breaking point. For this study, a motorized mechanical stretcher has been specifically designed to fit under the Raman microscope, thus allowing the simultaneous recording of the stress, strain and polarized Raman spectra. Due to its twin drive screw design, this stretcher allows to stretch the silk fiber symmetrically and thus to probe the same area of the fiber during the entire elongation procedure. The results obtained have allowed to clarify the assignment of some vibrational bands of silk. They also show that the intensity of some Raman bands is affected by tensile deformation. In particular, the amide III/amide I intensity ratio decreases as the strain increases and the variation is proportional to the stress applied on the fiber. These variations in intensity suggest that the alignment of the protein chains decreases with strain which might be due to the reorganization of the amorphous phase. The Raman spectra also show that several bands shift toward low wavenumbers as the strain applied increases indicating that the force constant and/or dihedral angles of the peptide bonds, in particular those involved in the β-sheets, are affected by drawing. Therefore, a local stress is directly applied on the β-sheets and the wavenumber shift observed is proportional to the stress applied on the fiber.  相似文献   

2.
An investigation into the influence of UV-irradiation on regenerated silk fibroin dissolved in water was carried out using UV-Vis and fluorescence spectroscopy. It was found that the absorption of regenerated silk fibroin in solution increased during UV-irradiation of the sample, most notably between 250 and 400 nm. Moreover, after UV-irradiation a wide peak emerged between 290 and 340 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV-irradiation of regenerated silk fibroin.The fluorescence of regenerated silk fibroin was observed at 305 nm, at 480 nm and at 601 nm after excitation at 275 nm. UV-irradiation caused fluorescence fading at 305 nm and at 601 nm. The increase of fluorescence was observed at 480 nm, probably due to formation of new photoproducts. After excitation at 305 nm the fluorescence of regenerated silk fibroin was observed at 340 nm and at 400 nm. UV-irradiation caused fluorescence fading at 340 nm. FTIR spectroscopy showed that primary structure of regenerated silk fibroin was not significantly affected by UV radiation. SDS-PAGE chromatography showed alterations of molecular weight of silk after UV exposure.  相似文献   

3.
Regenerated Antheraea pernyi silk fibroin film was prepared by dissolution of native silk fiber in aqueous lithium thiocyanate. The influence of aqueous ethanol treatment of the dried regenerated film on molecular conformation was studied by X‐ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. While the initial regenerated film consisted of α‐helix and random coil components, aqueous ethanol treatment of the film resulted in significant increase in β‐sheet component and improvement of water resistance of the film. This effect was strongly dependent on ethanol concentration, and 40–60% (w/w) ethanol was most effective due to balance of hydrophilic/hydrophobic action of the solvent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite has been substantially investigated due to its significant multifunctional potential. Here, in combination of micromorphology, crystalline conformation, dynamic mechanical property characterization, and Fourier self‐deconvolution (FSD) quantitative analysis, we investigated the RSF molecular chains conformation transition induced by GO nanosheet incorporation, and its influence on the structural and mechanical properties of solution casted RSF/GO composite films. The GO nanosheet promoted the silk fibroin molecular chains conformation transition from random coil to β‐sheet structure, and a correlation between β‐sheet structure fraction and GO concentration was revealed. The β‐sheet structure fraction increases further improved the dynamic mechanical property of composite films. Moreover, based on nucleation‐dependent aggregation of silk fibroin molecular chains, a mechanism considering the competition effect between GO concentration and its total surface area was proposed to explain the observed concentration‐dependent conformation transition phenomenon. The study improves our understanding on silk fibroin conformation transition process in RSF/GO composite and would provide a valuable reference for the rational design of bioinspired multifunctional materials with enhanced mechanical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1506–1515  相似文献   

5.
陈新 《高分子科学》2014,32(1):29-34
Ca(II) ions are added in the spinning dope to adjust the solidification rate of regenerated silk fibroin (RSF) solution during the wet-spinning process since Ca(II) ions are proved to be favorable to maintain the stable silk fibroin network in our previous work. The results show that when Ca(II)/RSF ratios are 1/50 and 1/20, the resulted RSF fibers exhibit good performance with the breaking energy more than 70 kJ/kg. However, higher Ca(II)/RSF ratio (for example, 1/10) hinders the solidification of spinning dope and results in poor RSF fibers. These observations together with earlier papers from this laboratory confirm that to produce tough silk fibers the spinning conditions must allow sufficient time for the adjustment of silk fibroin molecular chains.  相似文献   

6.
This study aimed the characterization of the films casted from the aqueous mixtures of the pH induced complexes between silk fibroin (SF) and hyaluronic acid (HA). The insoluble and transparent films were subjected to scanning electron microscopy (SEM) analyses to show the morphological changes. Thermal analysis of complex films was determined by a differential scanning calorimeter (DSC). The changes in the crystalline state were monitored by X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). It was shown that the complexation between HA and SF was dominantly induced by pH. It was shown that the complex films comprised mixtures of crystalline and non-crystalline regions.  相似文献   

7.
Degradation behaviors of porous scaffolds play an important role in the engineering process of a new tissue. In this study, three-dimensional porous silk fibroin/chitosan (SFCS) scaffolds were successfully prepared by freeze-drying method. In vitro degradation behaviors of SFCS scaffolds have been systematically investigated up to 8 weeks in phosphate buffer saline (PBS) solution at 37 °C. The following properties of the scaffolds were measured as a function of degradation time: pore morphology, structure, weight loss, and wet/dry weight value. The pH value of the PBS solution during degradation was also detected. SFCS scaffolds maintained its porous structure till 6 weeks of degradation. During the first 2 weeks, the pH value fluctuated in a narrow range from 6.53 to 6.93. SFCS scaffolds degraded much more quickly during the first 2 weeks, and the weight loss reached 19.28 wt% after 8 weeks of degradation. The degradation process affects little SFCS scaffolds' swelling properties.  相似文献   

8.
Abstract

In this paper, a series of porous nanohydroxyapatite/silk fibroin/chitosan (nHA/SF/CTS) scaffolds were successfully prepared using the freeze-drying method. The biomaterials were characterized by attenuated total reflection Fourier transform infrared spectroscopy, and mechanical testing and thermogravimetric analysis. Moreover, studies of porosity, pore size, swelling properties and in vitro degradation test were performed. Research has proved that micro-structure, porosity, water adsorption and compressive strength were greatly affected by the components’ concentration, in particular the content of silk fibroin. SEM observations showed that the scaffolds of nHA/SF/CTS are highly porous, with pore size in wide range from 25 to 300?µm which is suitable for cell growth. nHA/SF/CTS scaffolds have sufficient mechanical integrity to resist handling during implantation and in vivo loading. Both, the compressive modulus and compressive strength of the scaffold, decrease with the increase in silk fibroin content.  相似文献   

9.
周平 《高分子科学》2017,35(11):1373-1380
The conformation of silk fibroin(SF) frozen with polyethylene glycol(PEG) at a molecular weight from 2kDa to 20kDa and a mass ratio of PEG:SF from 1:5 to 10:1 was studied by spectral and microscopic methods. It is found that the conformation transition of SF from random coil to b-sheet could be induced by the stress resulting from PEG crystallization at-20 °C, and greatly depended on the cooling rate, PEG:SF mass ratio and PEG molecular weight. These findings provide a new method for the preparation of desired SF nanofibers.  相似文献   

10.
Structural changes of tussah (Antheraea pernyi) silk fibroin films induced by heat treatment were studied as a function of the treatment temperature in the range 200–250°C. The DSC curve of tussah films with α-helix molecular conformation displayed characteristic endo and exo peaks at 216 and 226°C, respectively. These peaks first weakened and then completely disappeared after heating at 230°C. Accordingly, the TMA thermal shrinkage at 206°C disappeared when the films were heated at 230°C. The onset of weight loss was monitored at 210°C by means of TG measurements. X-ray diffraction profiles gradually changed from α-helix to β-sheet crystalline structure as the treatment temperature increased from 200 to 250°C. On raising the heating temperature above 200°C, the intensity of IR and Raman bands characteristic of β-sheet conformation increased in the whole ranges of amide and skeletal modes. The sample treated at 200°C showed a spectral pattern intermediate between α-helix and β-sheet molecular conformation. The IR marker band for random coil structure, still detectable at 200°C, disappeared at higher treatment temperatures. Spectral changes attributable to the onset of thermal degradation appeared at 230°C. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 841–847, 1997  相似文献   

11.
Blend membranes (RCF1) were prepared from mixture solution of cellulose and silk fibroin (SF) in cuoxam by coagulating with acetone–acetic acid (4:1 by volume). The blend membranes were subjected to post-treatment with 10% NaOH aqueous solution, and their structure and properties were characterized by FT-IR, X-ray diffraction, DSC, SEM and DMTA. In previous work, cellulose/SF blend membranes (RCF2) prepared by coagulating with 10% NaOH aqueous solution formed a microporous structure, in which the SF as a pore former was almost completely removed from the membrane. However, when the blend membranes RCF1 were immersed in 10% NaOH aqueous solution for post-treatment, a strong hydrogen bonding between cellulose and SF inhibited the removal of SF. Although alkali is a good solvent for SF, the blend membranes RCF1 such obtained from cellulose and SF were alkali resistant. The crystallinity and the mean pore size of the blend membranes slightly decreased with increasing post-treatment time. This work provided a cellulose/silk blend membrane, which can be used under alkaline medium.  相似文献   

12.
Nanofibrous non-woven matrices were prepared by electrospinning a regenerated silk fibroin (SF) solution, and the structural changes of SF nanofibers treated with water vapor were investigated using time-resolved IR and (13)C CP/MAS NMR spectroscopy. Conformational transitions of SF from random coil to beta-sheet structures were induced by water vapor treatment and were strongly dependent on the treatment time and temperature. Water vapor treatment provided a useful means of stabilizing the SF nanofiber matrices, resulting in the formation of matrices with a decreased solubility in water and increased mechanical strength. The adhesion and spreading of both normal human keratinocytes and fibroblasts onto the SF nanofiber matrices were also investigated, and the water vapor-treated SF nanofiber matrices showed good cellular compatibility, in comparison with traditional methanol-treated ones. This approach to controlling the conformational changes of SF nanofibers by water vapor treatment may be useful in the design and tailoring of novel materials for biomedical applications, including wound dressings and scaffolds for tissue engineering.  相似文献   

13.
The effect of silicananofiller on the glass transition of a polyurethane was studied by DSC. Thepristine polymer exhibits a single glass transition at about –10°C.Uniform SiO2 spheres with different average sizes and narrow size distributionswere synthesized in solution by the Stöber method [1]. Both the effectsof silica content within the polymer and particle size were investigated,as well as two different surface treatments. Scanning electron microscopy(SEM) clearly confirms the presence of the particles within the polymer matrix,showing uniform distribution and no agglomeration. While shifting of the glasstransition has been reported by many authors, we have not seen any noticeableshift in this polymer. Surprisingly, we found no relevant effects when eitherincreasing the filler content or changing the particle size. Different amountsof particles with average diameters of 175, 395 and 730 nm did not affectthe glass transition temperature of the pristine polymer.  相似文献   

14.
Silk fibroin (SF) nanofibrous mats were fabricated via electrospinning process. These fibers were blended with TiO2 nanoparticles (TiO2 NPs). The influence of TiO2 NPs on the nanofibrous matrices was investigated by scanning electron microscopy (SEM), transmission electron microscopy, energy‐dispersive X‐ray, and thermogravimetric analysis. The SEM images revealed that the average diameter of the SF/TiO2 fibers was 385 ± 63 nm when the concentration of SF was up to 10% (w/v). Infrared spectra showed that the β‐sheet structure of the silk fibroin increased after acetone treatment. These SF/TiO2 nanofibrous mats exhibited higher equilibrium water content and water vapor transmission rate than hydrocolloid dressing. The hemocompatibility and cytocompatibility of SF/TiO2 nanofibrous mats were evaluated by complete blood count, cell attachment, and the spreading of L929 fibroblasts. These SF/TiO2 nanofibrous mats exhibited antibacterial activity against Escherichia coli under UV irradiation. Thus, these novel nanocomposite mats may be used for biomedical applications such as wound dressing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
杨宇红  邵正中  陈新 《化学学报》2006,64(16):1730-1736
通过一系列光谱实验手段研究了再生桑蚕(Bombyx mori)丝素蛋白在水溶液中的构象转变情况. 由于丝素蛋白含有较多带电荷的氨基酸残基, 因此环境pH值对丝素蛋白的结构有着一定的影响: 酸性越强, 丝素蛋白越容易发生从无规线团到β-折叠结构转变; 相对而言, 碱性条件则更有利于丝素蛋白以无规线团结构稳定存在. 特别是当pH在4附近时, 丝素蛋白的无规结构最易发生改变; 而pH为6左右时, 丝素蛋白的结构则较为稳定. 这种变化趋势与沿着成熟蚕腺体中丝素蛋白所处的环境及其状态相当吻合, 由此表明pH值的调节是蚕在生物体中控制其丝素蛋白状态的一个相当重要的手段. 这一结果对人工纺制动物丝条件的调控有着极其重要的现实意义. 同时我们还发现, 在相当宽的pH范围内, 丝素蛋白的二级结构存在着中间体形态, 表明丝素蛋白的变性过程不符合简单的二态机制.  相似文献   

16.
The thermal response of tussah (Antheraea pernyi) silk fibroin films treated with different water–methanol solutions at 20°C was studied by means of dynamic mechanical (DMA) and thermomechanical (TMA) analyses as a function of methanol concentration and treatment time. The DMA curves of α-helix films (treated with ≥80% v/v methanol for 2 min and 100% methanol for 30 min) showed the sharp fall of storage modulus at about 190°C, and the loss peak in the range 207–213°C. The TMA curves were characterized by a thermal shrinkage at 209–211°C, immediately followed by an abrupt extension leading to film failure. Both storage and loss modulus curves significantly shifted upwards for β-sheet films, obtained by treatment with ≤60% methanol for 30 min. The loss peak exhibited a maximum at 236°C. Accordingly, the TMA shrinkage at above 200°C disappeared. The films broke beyond 330°C, failure being preceded by a broad contraction step. Intermediate DMA and TMA patterns were observed for the other solvent-treated films. The loss peak shifted to higher temperature (219–220°C), and a minor loss modulus component appeared at about 230°C. This coincided with the onset of a plateau region in the storage modulus curve. The TMA extension–contraction events in the range 200–300°C weakened, and the samples displayed a final broad contraction (peak temperature 326–338°C) before breaking. The DMA and TMA response of these films was attributed to partial annealing by solvent treatment, which resulted in the formation of nuclei of β-sheet crystallization within the film matrix. The increased thermal stability was probably due to the small β-sheet crystals formed, which acted as high-strength junctions between adjacent random coil and α-helix domains. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2717–2724, 1998  相似文献   

17.
桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析   总被引:4,自引:0,他引:4  
姚菊明  祝永强  李媛  励丽 《化学学报》2006,64(12):1273-1278
利用基因工程方法把含有短肽RGD的氨基酸序列连接到桑蚕丝素蛋白的结晶序列GAGAGS上, 通过调节DNA的聚合度, 合成了具有[TGRGDSPA(GVPGV)2GG(GAGAGS)3AS]n一级结构、不同分子量大小的桑蚕丝素-RGD融合蛋白, 并且通过在M9培养基中添加[3-13C]Ala的方法进行融合蛋白的稳定同位素标记. 13C CP/MAS NMR结果显示, 融合蛋白中的GAGAGS部分具有与天然桑蚕丝素结晶部分相同的分子结构, 即Silk I处理后为均一的分子结构, 而Silk II处理后为不均一的分子结构, 它包含了三种不同的结构成分. 另一方面, 通过对小鼠成纤维细胞BALB/3T3在不同蛋白材料载体上的粘附和增殖性能的测定结果显示, 融合蛋白对细胞的增殖性能与天然胶原蛋白相近, 但表现出了比胶原蛋白更好的细胞粘附性能. 该研究结果显示, 如果对该桑蚕丝素-RGD融合蛋白进行适当加工, 可能适合于组织工程支架材料的应用.  相似文献   

18.
The influence of repeated freeze–thawing on pore structural characteristics and physical properties of porous silk fibroin materials prepared by freeze drying were studied. It showed that when quick‐frozen silk fibroin solution was repeatedly thawed and frozen before being vacuum dried, thus pore size of prepared porous silk fibroin materials increased from 67 µm to about 120 µm, and pore density decreased from 80 per square millimeter to about 28 per square millimeter; at the same time compression ratio and moisture permeability increased from 22.7% and 230 g/m2 hr to about 33.7% and 308 g/m2 hr, respectively, tensile strength and dissolvability in hot water decreased from 20.2 N/cm2 and 42.7% to about 12.5 N/cm2 and 26.1%, respectively. Both the times of repeated thawing and the thawing temperature had a certain influence on the above‐mentioned pore characteristic parameters and physical properties. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Infrared spectra of hydrogen-bonded organic compound 2-biphenylmethanol has been studied in the wide temperature range from 320 to 12 K. It has been found that IR spectra drastically changed with temperature in the 700–850, 1290–1500, and 3100–3600 cm−1 spectral regions, where deformational vibrations of phenyl rings and methanol group, as well as ν(OH) stretching vibration manifest themselves. The analysis of the computer simulation of the IR spectra for various 2-biphenylmethanol conformers, which are characterized by different combinations of angles of the mutual orientation of the phenyl rings relative to each other and a methanol group relative to the phenyl ring allowed us to conclude that the hydrogen bonding results not only in the shortened of the intermolecular bonds, but also in the increasing of the angle between phenyl ring and methanol group. In other words, hydrogen bonding leads to the changes in the molecule conformation.  相似文献   

20.
The equilibrium torsion angles of 2-arylpyrroles in the liquid and solid phases were estimated by UV spectroscopy. In solution, compounds containing no substituents in positions 1, 3, and 2′ possess an average torsion angle of 24°, those containing one substituent have an angle of 29°, and in the case of two and three substituents, the angles are 53° and 65°, respectively. Phase transitions lead to flattening of the molecules in almost all cases. The average torsion angles in the compounds with no substituents in positions 1, 3, and 2′ decrease by ≈5° on passing from the gas to the liquid state and by ≈25° on going from the liquid to the solid state. The geometric parameters of 2-arylpyrroles with one or two substituents in positions 1, 3, and 2′ are less sensitive to phase transitions, while trisubstituted derivatives even retain their equilibrium conformations upon phase transitions. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1472–1479, August, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号