首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

2.
Abstract

Square planar mononuclear platinum(II) complexes having general formula [Pt(Ln)Cl2], (where, Ln?=?L1–4) were synthesized with neutral bidentate heterocyclic 1,3,5-trisubstituted bipyrazole based ligands. The synthesized compounds were characterized by physicochemical method such as TGA, molar conductance, micro-elemental analysis and magnetic moment, and spectroscopic method such as, FT-IR, UV–vis, 1H NMR, 13C NMR and mass spectrometry. Biological applications of the compounds were carried out using in vitro brine shrimp lethality bioassay, in vitro antimicrobial study against five different pathogens, and cellular level cytotoxicity against Schizosaccharomyces pombe (S. Pombe) cells. Pt(II) complexes were tested for DNA interaction activities using electronic absorption titration, viscosity measurements study, fluorescence quenching technique and molecular docking assay. Binding constants (Kb) of ligands and complexes were observed in the range of 0.23–1.07?×?105?M?1 and 0.51–3.13?×?105?M?1, respectively. Pt(II) complexes (I–IV) display an excellent binding tendency to biomolecule (DNA) and possess comparatively high binding constant (Kb) values than the ligands. The DNA binding study indicate partial intercalative mode of binding in complex-DNA. The gel electrophoresis activity was carried out to examine DNA nuclease property of pUC19 plasmid DNA.  相似文献   

3.
4.
Ferrocene‐incorporated selenoureas 1‐(4‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P4Me), 1‐(3‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P3Me), and 1‐(2‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P2Me) were synthesized and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, CHNS, and single‐crystal X‐ray diffraction. DNA interaction of the compounds was investigated with cyclic voltammetry, UV–visible spectroscopy, and viscometry, which is a prerequisite for anticancer agents. Drug‐DNA binding constant was found to vary in the sequence: KP4Me (4.9000 × 104 M?1) > KP2Me (2.318 × 104 M?1) > KP3Me (1.296 × 104 M?1). Antioxidant (1,1‐diphenyl‐2‐picrylhydrazyl), antifungal (against Faussarium solani and Helmentosporium sativum), and antibacterial (against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis) activities have also been reported in addition.  相似文献   

5.
Abstract: We identified and characterized 125I-endothelin-1 (125I-ET-1) binding sites in tumor capillaries isolated from human glioblastomas, using the quantitative receptor autoradiographic technique with pellet sections. Quantification was done using the computerized radioluminographic imaging plate system. High-affinity ET receptors were localized in capillaries from glioblastomas and the surrounding brain tissues (KD = 4.7 ± 1.0 × 10?10 and 1.6 ± 0.3 × 10?10M, respectively; Bmax = 161 ± 38 and 140 ± 37 fmol/mg, respectively; mean ± SEM, n = 5). BQ-123, a selective antagonist for the ETA receptor, potently competed for 125I-ET-1 binding to sections of the microvessels with IC50 values of 5.1 ± 0.3 and 5.1 ± 1.5 nM, and 10?6M BQ-123 displaced 84 and 58% of ET binding to capillaries from tumors and brains, respectively. In addition, competition curves obtained in the presence of increasing concentrations of ET-3 showed two components (IC50 = 5.7 ± 2.5 × 10?10 and 1.4 ± 0.2 × 10?6M for tumor microvessels, 1.8 ± 0.6 × 10?10 and 1.1 ± 0.3 × 10?6M for brain microvessels, respectively). Our results indicate that (a) the method we used is simple and highly sensitive for detecting and characterizing various receptors in tumor capillaries, especially in the case of a sparse specimen, and (b) capillaries in glioblastomas express specific high-affinity ET binding sites, candidates for biologically active ET receptors, which predominantly belong to the ETA subtype.  相似文献   

6.
Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine–DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine–DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-timedrug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53?×?103 M?1 and 8.12?×?103 M?1, respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects.  相似文献   

7.
The effect of magnesium ions on the parameters of the DNA helix-coil transition has been studied for the concentration range 10?6–10?1M at the ionic strengths of 10?3M Na+. Special attention has been given to the region of low ion concentrations and to the effect of polyvalent metallic impurities present in DNA. It has been shown that binding with Mg++ increases the DNA stability, the effect being observed mainly in the concentration range 10?6–10?4M. At[Mg++]>10?2M the thermal stability of DNA starts to decrease. The melting range extends to concentrations ~10?5M and then decreases to 7–8°C at the ion content of 10?3M. Asymmetry of the melting curves is observed at low ionic strengths ([Na+] = 10?3M) and [Mg++] ? 10?5M. The results, analyzed in terms of the statistical thermodynamic theory of double-stranded homopolymers melting in the presence of ligands, suggest that the effects observed might be due to the ion redistribution from denatured to native DNA. An experimental DNA–Mg++ phase diagram has been obtained which is in good agreement with the theory. It has been shown that thermal denaturation of the system may be an efficient method for determining the ion-binding constants for both native and denatured DNA.  相似文献   

8.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

9.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

10.
A phosphodiesterase I (EC 3.1.4.1; PDE-I) was purified from Walterinnesia aegyptia venom by preparative native polyacrylamide gel electrophoresis (PAGE). A single protein band was observed in analytical native PAGE and sodium dodecyl sulfate (SDS)-PAGE. PDE-I was a single-chain glycoprotein with an estimated molecular mass of 158 kD (SDS-PAGE). The enzyme was free of 5′-nucleotidase and alkaline phosphatase activities. The optimum pH and temperature were 9.0 and 60°C, respectively. The energy of activation (Ea) was 96.4, the Vmax and Km were 1.14 µM/min/mg and 1.9 × 10?3 M, respectively, and the Kcat and Ksp were 7 s?1 and 60 M ?1 min?1 respectively. Cysteine was a noncompetitive inhibitor, with Ki = 6.2 × 10?3 M and an IC50 of 2.6 mM, whereas adenosine diphosphate was a competitive inhibitor, with Ki = 0.8 × 10?3 M and an IC50 of 8.3 mM. Glutathione, o-phenanthroline, zinc, and ethylenediamine tetraacetic acid (EDTA) inhibited PDE-I activity whereas Mg2+ slightly potentiated the activity. PDE-I hydrolyzed thymidine-5′-monophosphate p-nitrophenyl ester most readily, whereas cyclic 3′-5′-AMP was least susceptible to hydrolysis. PDE-I was not lethal to mice at a dose of 4.0 mg/kg, ip, but had an anticoagulant effect on human plasma. These findings indicate that W. aegyptia PDE-I shares various characteristics with this enzyme from other snake venoms.  相似文献   

11.
We determined the binding sites of curcumin (cur), resveratrol (res), and genistein (gen) with milk β-lactoglobulin (β-LG) at physiological conditions. Fourier transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopic methods as well as molecular modeling were used to determine the binding of polyphenol–protein complexes. Structural analysis showed that polyphenols bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of Kcurcumin–β-LG?=?4.4 (±?.4)?×?104 M?1, Kresveratrol–β-LG?=?4.2 (±?.2)?×?104 M?1, and Kgenistein–β-LG?=?1.2 (±?.2)?×?104?M?1. The number of polyphenol molecules bound per protein (n) was 1 (cur), 1.1 (res), and 1 (gen). Molecular modeling showed the participation of several amino acid residues in polyphenol–protein complexation with the free binding energy of ?12.67 (curcumin–β-LG), ?12.60 (resveratrol–β-LG), and ?10.68?kcal/mol (genistein–β-LG). The order of binding was cur?>?res?>?gen. Alteration of the protein conformation was observed in the presence of polyphenol with a major reduction of β-sheet and an increase in turn structure, causing a partial protein structural destabilization. β-LG might act as a carrier to transport polyphenol in vitro.  相似文献   

12.
B Lubas  T Wilczok 《Biopolymers》1971,10(8):1267-1276
The molecular mobility of calf thymus DNA molecules in solution has been discussed in terms of correlation time τ calculated from measurements of longitudinal T1 and transverse T2 magnetic relaxation times. The influence of DNA concentration and ionic strength of the solution upon freedom of movement of DNA molecules was studied for native and denatured DNA and also during thermal helix-coil transition. The dependence of τ values on temperature was carried out by comparing the values of correlation times τtat given temperature with the correlation time τ20 at 20°C. The molecular rotation of DNA at 20°C and at higher ionic strength at 0.15 and 1.0.M NaCl is described by τ values of the order of 1.0–1.2 × 10?8 and was reduced slightly with increase of temperature below the helix-coil transition. The molecular rotation of DNA in 0.02MNaCl was lower at 20°C as compared to DNA in solvents with higher NaCl concentrations and increases rapidly with increase of temperature in the range 20–60°C. The values of correlation time are characterized by fast increase at temperatures above the spectrophotometrically determined beginning of melting curve. The beginning of this increase is observed at about 65, 80, and 85°C for DNA in 0.02, 0.15, and 1.0MNaCl, respectively. Values of correlation time for denatured DNA are in all cases about 1.1–1.4 times that for native DNA. The obtained results are discussed in terms of conformation of DNA molecules in solution as well as in terms of water dipole binding in DNA hydration shells.  相似文献   

13.
Abstract

The interaction between Tb(IV)-NR complex and herring sperm DNA in buffer solution of Tris-HCl was investigated with the use of acridine orange(AO) as a spectral probe. The binding modes and other information were provided by the UV–spectrophotometry and fluorescence spectroscopy. The thermodynamic functions expressed that the binding constants of Tb(IV)-NR complex with DNA was Kθ298.15K = 4.03?×?105?L·mol?1, Kθ310.15K =1.30?×?107?L·mol?1, and the ΔrGθ m 298.15?K=?3.20?×?104 J·mol?1. The scatchard equation suggested that the interaction mode between Tb(IV)-NR complex and herring sperm DNA is electrostatic and weak intercalation bindings. FTIR spectroscopy results also indicate that there is a specific interaction between the Tb(IV)-NR complex and the A and G bases of DNA.  相似文献   

14.
The purpose of this study was to elucidate the binding of paeonol to human serum albumin (HSA) through spectroscopic methods. The fluorescence quenching of HSA by paeonol was a result of the formation of the HSA–paeonol complex with low binding affinity (K = 4.45 × 103 M?1 at 298 K). Thermodynamic parameters (ΔG = –2.08 × 104 J·mol?1, ΔS = 77.9 J·mol?1·K?1, ΔH = 2.41 × 103 J·mol?1, kq = 9.67 × 1012 M?1·s?1) revealed that paeonol mainly binds HSA through hydrophobic force following a static quenching mode. The binding distance was estimated to be 1.91 nm by fluorescence resonant energy transfer. The conformation of HSA was changed and aggregates were formed in the presence of paeonol, revealed by synchronous fluorescence, circular dichroism, Fourier transform infrared spectroscopy, three‐dimensional fluorescence spectroscopy, and resonance light scattering results.  相似文献   

15.
Small globular protein, β-lactoglobulin (βLG), which has significant affinity toward many drugs, is the most abundant whey protein in milk. In this study, the interaction of βLG with three important nutrients, ascorbic acid (ASC), folic acid (FOL), and vitamin K3 (VK3) was investigated by spectroscopic methods (UV–visible and fluorescence) along with molecular docking technique. The results of fluorescence measurements showed that studied nutrients strongly quenched βLG fluorescence in static (FOL and ACS) or static–dynamic combined quenching (VK3) mode. The values of binding constants (KβLG-ASC ~ 4.34 × 104 M?1, KβLG-FOL ~ 1.67 × 104 M?1and KβLG-VK3 ~ 13.49 × 104 M?1 at 310 K) suggested that VK3 and FOL had stronger binding affinity toward βLG than ASC. Thermodynamic analysis indicated that hydrophobic interactions are the major forces in the stability of FOL–βLG complex with enthalpy- and entropy-driving mode while, hydrogen bonds and van der Waals interactions play a major role for βLG–ASC and βLG–VK3 associations. The results of 3D fluorescence FT-IR and UV–Visible measurements indicated that the binding of above nutrients to βLG may induce conformational and micro-environmental changes of protein. Also, there is a reciprocal complement between spectroscopic techniques and molecular docking modeling. The docking results indicate that the ASC, FOL, and VK3 bind to residues located in the subdomain B of βLG. Finally, this report suggests that βLG could be used as an effective carrier of above nutrients in functional foods.  相似文献   

16.
Abstract

Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1×107 M?1 to 2.0×108 M?1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0×108 M?1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites -(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10–100 fold higher drug concentrations to disrupt the CEN 11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383–392,1984; Marx and Denial, Molecular Basis of Cancer 172B,65-15 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

18.
The interaction of the Trp–Sm(III) complex with herring sperm DNA (hs‐DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV‐vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp–Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)–(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K?25°C = 7.14 × 105 L·mol?1 and K?37°C = 5.28 × 104 L·mol?1, and it could displace the AO dye from the AO–DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that ΔrHm? is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs‐DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.  相似文献   

20.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号