首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A series of segmented polyurea urethane and polyurea block copolymers based on a hexane diisocyanate (HDI) modified aminopropyl terminated polydimethylsiloxane soft segment was synthesized. The hard segments consisted of 4,4′-methylene diphenylene diisocyanate (MDI) which was chain extended with 1,4-butanediol (BD), N-methyldiethanolamine (MDEA), or ethylene diamine. Zwitterionomers were prepared by quaternizing the tertiary amine of the MDEA extended material with γ-propane sultone. The effect of chemical structure on the extent of phase separation and physical properties was studied using a variety of techniques including thermal analysis, dynamic mechanical spectroscopy, tensile testing, and small-angle x-ray scattering. It was observed that the compatibility between the nonpolar polydimethylsiloxane soft segments and the polar urethane hard segments was improved by inserting HDI linkages into the polydimethylsiloxane soft segments. The aggregation of hard segments was enhanced by increasing hard-segment content or by the introduction of ionic functionality. The tensile strength and modulus of these materials was higher than those of polyurethanes containing soft segments based on polydimethylsiloxane and its derivatives.  相似文献   

2.
A series of polyurethane block polymers based on hydroxybutyl-terminated polydimethyl-siloxane soft segments of molecular weight 2000 were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) which was chain extended with either 1,4-butanediol (BD) or N-methyldiethanolamine (MDEA). The MDEA-extended materials were ionized by using 1,3-propane sultone. The weight fraction of hard segments was in the range 0.13–0.39. The morphology and properties of these polyurethane elastomers were studied by a variety of techniques. All of these short-segment block copolymers showed nearly complete phase separation. The zwitterionomer materials exhibited ionic aggregation within the hard domains. Hard-segment crystallinity or ionic aggregation did not affect the morphology. Hard-domain cohesion was found to be a more important factor than hard-domain volume fraction in determining the tensile and viscoelastic properties of these elastomers.  相似文献   

3.
聚硅氧烷聚脲多嵌段共聚物中氢键的研究   总被引:4,自引:0,他引:4  
采用多种手段研究了聚硅氧烷与聚脲嵌段共聚物中所存在的各类氢键.特别探讨在聚硅氧烷软段中引入极性氰丙基对体系成氢键能力的影响和两相间相互作用力的情况结果表明,在软段分子中引入极性氰丙基有利于增加聚硅氧烷分子与聚脲链段的相互作用,这一相间作用力使两相间界面层厚度随着硬段分子量的增加而加宽,并发现在聚硅氧烷聚脲嵌段共聚物中硬段的聚集形态随溶液浓度改变变化不大,其中氢键随着温度升高而下降.  相似文献   

4.
For the purpose of oxygen enrichment from air, the gas permeability and selectivity of an ionic polyurethane membrane was under investigation. Membranes of ionic polyurethane were prepared by step-growth polymerization of hydroxyl terminated polybutadiene (HTPB) and 4,4′-dicyclohexylmethane diisocyanate (H12MDI). The ionic group was introduced by adding N-methyldiethanolamine (MDEA) as the chain extender of which the tertiary amines were complexed with cupric ions. The effect of hard segment content, polymerization method, peroxide introduction, and the amount of cupric ion on gas permeability were investigated. It was found that the binding of hard segment and the flexibility of soft segments had subtle effects on gas permeability. Membranes of the same composition were synthesized through two different procedures, one- and two-stage polymerization. The former contains large hard segment of cluster aggregation and flexible soft segments had a higher gas permeation rate. When a crosslinker, benzoyl peroxide, was added, the crosslinkage within soft segments hindered cluster formation by hard segment aggregation, the permeability increased. Furthermore, CuCl2 addition enhanced hard segment aggregation, more hard segments formed cluster aggregates and less dispersed in soft segment region, which also increased permeability. However, excess CuCl2 addition resulted in CuCl2 piling up in the soft segment region, which restricted the movement of soft segments and therefore reduced the gas permeability.  相似文献   

5.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

6.
A novel macrodiol based on mixed silicone and carbonate chemistries was synthesized and used as a soft segment precursor in the synthesis of two series of segmented polyurethane (PU) copolymers varying in hard segment content and soft segment molecular weight. The hard segments in these copolymers were derived from 4,4‐methylene diphenyl diisocyanate and 1,4‐butane diol. The phase transitions, microphase separation behavior, and mechanical properties of the copolymers were investigated using a variety of experimental methods. When compared with segmented PU copolymers having predominately poly(dimethyl siloxane) soft segments, these siloxane–carbonate soft segment copolymers exhibit enhanced intersegment mixing, and consequently relatively low mechanical modulus. With relatively low modulus and siloxane units in the soft phase, the siloxane–carbonate PUs have potential for use in cardiac and orthopedic biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
本文讨论了以聚环氧乙烷(PEO)、聚环氧丙烷(PPO)以及聚丁二烯(PBD)为软段,以4,4’-二异氰酸二苯甲烷(MDI)和N,N-二羟乙基甲胺(MDEA)为硬段的链段型聚氨酯的合成。并通过MDEA中的第三胺与Υ-丙磺内酯反应,转化为双离子型离聚体。用差示扫描量热、红外光谱、动态力学性能以及应力-应变等实验方法研究了化学组成和氨磺化程度对材料相分离程度,力学性能和形态结构的影响。结果表明,离子化后的材料力学性能有很大的改善。对PBD为软段的材料,离子化只能提高硬段“微区”的内聚能,而对PEO、PPO为软段的材料,还能大大提高软、硬相的相分离程度。  相似文献   

8.
用二步法合成了不同软段 (PPO ,PEG ,PEPA)聚氨酯 酰亚胺 (PUI)嵌段共聚物 ,FTIR光谱表征了所有合成PUI分子主链均含有酰亚胺链段 ,并研究了PUI嵌段共聚物的热性能受软段类型及长度的影响 .DSC研究表明聚酯型PUI的软硬段之间的相容性比聚醚型PUI好 ,随相同软段分子量的增加 ,PUI体系的软硬段兼容性变差 ,并显示了相分离的特征 ;热失重 (TGA)研究得出不同软段的PUI样品的热稳定性大小顺序为 :PEPA PUI >PEG PUI>PPO PUI ;动态力学 (DMTA)研究给出了所合成的PUI样品在 5 0~ 2 0 0℃范围内均出现了较长的模量平台显示出有较好的耐热性 ,且随硬段含量的升高其储能模量不断增强  相似文献   

9.
Polyurethanes based on methylene bis(p-phenyl isocyanate), bis(hydroxymethyl) propanoic acid, and poly (tetramethylene oxide) were synthesized, and their morphology and physical properties investigated. The acid polyurethanes exhibited very poor phase separation and mechanical properties, but upon neutralization with alkali metals phase separation improved dramatically and the materials resembled tough elastomers. The choice of cation played a much less important role than hard segment content in determining morphology and properties. Small-angle x-ray scattering patterns of these ionic polyrethanes exhibit two peaks, one characteristic of scattering between the hard and soft domains and the other reflecting scattering from aggregates of ionic groups residing within the hard domains. While ionic aggregation is the primary driving force for phase separation in these materials, their morphology more closely resembles that for nonionic polyurethanes than that for conventional ionomers, because the ionic groups exist in blocks composed primarily of rigid diisocyanate residues.  相似文献   

10.
Multiblock poly(ester-block-amide)s (PEA) elastomers comprising hard blocks of oligoamide and oligoester soft segments were prepared and their structure-property relations were analysed. The polycondensation reaction of oligoesters (prepared from 1,4-butanediol and dimerized fatty acid) with oligolaurolactam (PA12) gave copolymer series with variable blocks content (the soft segments content was varied from 24 to 60 wt.%). PEAs are the phase system composed of crystallised sequences of oligoamide (hard segment phase) as well as oligoesters (soft segment phase). Mixing between the hard and soft phases was studied by thermal and mechanical measurements (DSC, DMTA). These results have indicated on a multiphase structure of investigated materials. The relationship between the observed thermal and tensile properties and the soft/hard segments content indicated on an increase of the phase separation with soft segments content.  相似文献   

11.
Synthesis and thermal properties of poly(aliphatic/aromatic-ester) copolymers containing additionally poly(dimethylsiloxane) (PDMS) chains in the soft segments are discussed. A two step method of transesterification and polycondensation from the melt was carried out in a presence of magnesium-titanate catalyst. An aliphatic dimer fatty acid was used as a component of the soft segments while poly(butylene terephthalate) (PBT) constituted the hard blocks. Effectiveness of the incorporation of PDMS into polymer chain was confirmed by the Soxhlet extraction and infrared spectroscopy of an excess of 1,4-butane diol destilled off from the polycondensation reaction. Multiblock copolymers showed microphase separation as determined by differential scanning calorimetry. Incorporation of a small amount of PDMS (up to 14.5 wt.-%) into polymer chain containg low concentration of hard segments of PBT lead to decrease in crystallinity of such copolymers. This may indicate that semicrystalline PBT are dissolved in the amorphous matrix of the soft segments.  相似文献   

12.
The phase behavior of the as‐prepared polyether polyurethane (PU) elastomers was investigated by dynamic mechanical analysis (DMA), polarized optical microscope (POM), and atomic force microscopy (AFM). This PU copolymers were composed of different compositions of two soft segments, poly(ethylene glycol) (PEG) and hydrolytically modified hydroxyl‐terminated poly(butadiene‐co‐acrylonitrile) (h‐HTBN) oligomers. The microphase separation behavior is confirmed to occur between soft and hard segments as well as soft and soft segments as the h‐HTBN is incorporated into the PU system, depending on soft‐soft and/or soft‐hard microdomain composition, molecular weight (MW) of PEG, and hydrolysis time of HTBN. The driving force for this phase separation is mainly due to the formation of inter‐ and intramolecular hydrogen bonding interaction. The PU‐70, PU‐50 samples with non‐reciprocal composition seem to exhibit larger microphase separation than any other PU ones. The hydrolysis degradation, thermal stability, and mechanical properties of the copolymers were assessed by gravimetry, scanning electron microscope (SEM), thermal gravity analysis (TGA), and tensile test, respectively. The experimental results indicated that the incorporation of h‐HTBN soft segment into PEG as well as low MW of PEG leads to increased thermal and degradable stability based on the intermolecular hydrogen bond interaction. The PU‐70 and PU‐50 copolymers exhibit better mechanical properties such as high flexibility and high ductility because of their larger microphase separation architecture with the hard domains acting as reinforcing fillers and/or physical crosslinking agents dispersed in the soft segment matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Segmented poly(ester urethanes) were synthesized from oligomeric cellulose triacetate diols, poly(caprolactone)diols, and 1,6-hexamethylene diisocyanate. The effects of the molecular mass and structure of soft and hard segments of poly(ester urethanes) on their thermal behavior, mechanical properties, and degradation in aqueous solutions of a phosphate buffer were studied by DSC and IR spectroscopy. The combination of soft segments derived from poly(caprolactone)diols with M = (1.0–3.5) × 103, hard segments based on depolymerized cellulose triacetate with M = (2–4) × 103, and 1,6-hexamethylene diisocyanate makes it possible to synthesize poly(ester urethanes) with excellent mechanical characteristics. The degree of crystallinity of these polymers increases with a decrease in the molecular mass of the depolymerized cellulose triacetate block in the hard segment. As the soft segment lengthens, phase separation between domains of soft and hard segments becomes more pronounced. Upon incorporation of poly(ethylene glycol) blocks into the soft segments of poly(ester urethanes), their hydrophobicity is enhanced and biodegradability is accelerated.  相似文献   

14.
A series of polyurea urethane block polymers based on either aminopropyl-terminated polycyanoethylmethylsiloxane (PCEMS) soft segments or soft segment blends of PCEMS and polytetramethylene oxide (PTMO) were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) chain-extended with 1,4-butanediol. The hard segment content varied from 11 to 36%, whereas the PTMO weight fraction in the soft segment blends varied from 0.1 to 0.9. The cyanoethyl side group concentration was also varied during the synthesis of the PCEMS oligomer. The morphology and properties of these polymers were studied by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical and tensile testing, and small-angle x-ray scattering. These materials exhibited microphase separation of the hard and soft segments; however, attaching polar cyanoethyl side groups along the apolar siloxane chains promoted phase mixing in comparison with polydimethylsiloxane-based polyurethanes. The increased phase mixing is postulated to lead to improved interfacial adhesion and thus can account for the observed improvement in ultimate tensile properties compared with polydimethylsiloxane-based polyurethanes. Both hard segment content and cyanoethyl concentration are important factors governing the morphological and tensile properties of these polymers.  相似文献   

15.
Biodegradable materials are pivotal in the biomedical field, where how to precisely control their structure and performance is critical for their translational application. In this study, poly(L-lactide-b-ε-caprolactone) block copolymers (bPLCL) with well-defined segment structure are obtained by a first synthesis of poly(ε-caprolactone) soft block, followed by ring opening polymerization of lactide to form poly(L-lactide acid)  hard block. The pre-polymerization allows for fabrication of bPLCL with the definite compositions of soft/hard segment while preserving the individual segment of their special soft or hard segment. These priorities make the bPLCL afford biodegradable polymer with better mechanical and biodegradable controllability than the random poly(L-lactide-co-ε-caprolactone) (rPLCL) synthesized via traditional one-pot polymerization. 10 mol% ε-caprolactone introduction can result in a formation of an elastic polymer with elongation at break of 286.15% ± 55.23%. Also, bPLCL preserves the unique crystalline structure of the soft and hard segments to present a more sustainable biodegradability than the rPLCL. The combinative merits make the pre-polymerization technique a promising strategy for a scalable production of PLCL materials for potential biomedical application.  相似文献   

16.
The goal of the investigation presented here is the development of extremely hydrophobic materials based on polysulfone that can be applied, for instance, as fouling-resistant membrane materials. The concept used is the addition of semifluorinated polymers to polysulfone in suitable blend compositions. The influence of molecular parameters like chain structure of the semifluorinated polymer (segmented block copolymers, random copolymers) and segment molecular weight on the state of phase separation in the bulk and its influence on the surface properties have been systematically examined. It could be shown that segmented block copolymers with semifluorinated polyester segments with intermediate segment molecular weight are more suitable in blends with polysulfone than random polysulfone copolymers having semifluorinated side chains with respect to form homogeneous thin films (coatings) with highly non-wetting properties.  相似文献   

17.
Two series of segmented poly(ester‐urethane)s were synthesized from bacterial poly[(R)‐3‐hydroxybutyrate]‐diol (PHB‐diol), as hard segments, and either poly(ε‐caprolactone)‐diol (PCL‐diol) or poly(butylene adipate)‐diol (PBA‐diol), as soft segments, using 1,6‐hexamethylene diisocyanate as a chain extender. The hard‐segment content varied from 0 to 50 wt.‐%. These materials were characterized using 1H NMR spectroscopy and GPC. The polymers obtained were investigated calorimetrically and dielectrically. DSC showed that the Tg of either the PCL or PBA soft segments are shifted to higher temperatures with increasing PHB hard‐segment content, revealing that either the PCL or PBA are mixed with small amounts of PHB in the amorphous domains. The results also showed that the crystallization of soft or hard segments was physically constrained by the microstructure of the other crystalline phase, which results in a decrease in the degree of crystallinity of either the soft or hard segments upon increase of the other component. The dielectric spectra of poly(ester‐urethane)s, based on PCL and PHB, showed two primary relaxation processes, designated as αS and αH, which correspond to glass–rubber transitions of PCL soft and PHB hard segments, respectively. Whereas in the case of other poly(ester‐urethane)s, derived from PBA and PHB, only one relaxation process was observed, which broadens and shifts to higher temperature with increasing PHB hard‐segment content. It was concluded from these results that our investigated materials exhibit micro‐phase separation of the hard and soft segments in the amorphous domains.  相似文献   

18.
Anionomer-type waterborne polyurethanes (PUs) were obtained from poly(β-methyl-δ-valerolactone) glycol (PMVL) and isophorone diisocyanate, following a prepolymer mixing process. The soft-hard segment phase separation in response to the variations of composition and structure of PU has been studied from the dynamic mechanical measurements of the emulsion cast films. The structural variation included ionic and hard segment content, molecular weight of NCO-terminated prepolymer, and type and length of the soft segment. It was found that phase separation is more sensitive to the soft segment length, rather than the soft segment content. With only phase separation, the rubbery modulus was significant even with lower hard segment content. Phase separation was much more pronounced with PU from poly(tetramethylene adipate) glycol, rather than from PMVL and poly(caprolactone) © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The glass transition and melting behavior of poly(ether-ester) multiblock copolymers with poly(tetramethylene isophthalate) (PTMI) hard segments and poly(tetramethylene oxide) (PTMO) soft segments are studied by differential scanning calorimetry (DSC) and small- and wide-angle x-ray scattering (SAXS and WAXS). Thermodynamic melting parameters for the PTMI homopolymer are estimated by WAXS and from the dependence of melting point on crystallization temperature. The melting behavior of PTMI is characterized by dual endotherms which are qualitatively representative of the original morphology, although reorganization effects are present. The composition dependence of the glass transition temperature parameters after rapid quenching from the melt are well described by mixed phase correlations for copolymers in the range 30-100 wt% hard segment. Combined with SAXS characterization at melt temperatures, a single phase melt is suggested in these materials which extends to temperatures below the hard segment melting point. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
A series of polyester urethanes (PEUs) comprising poly(lactic acid‐co‐polydiol) copolymers as a soft segment, 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (BDO) as a hard segment were systematically synthesized. Soft segments, which were block copolymers of L ‐lactide (LA) and polydiols such as poly(ethylene glycol) and poly(trimethylene ether glycol), were prepared via ring opening polymerization. Glass transition temperatures (Tg) of the obtained PEUs were found strongly dependent on properties of copolymer soft segments. By simply changing composition ratio, type and molecular weight of polydiols in the soft segment preparation step, Tg of PEU can be varied in the broad range of 0–57°C. The synthesized PEUs exhibited shape memory behavior at their transition temperatures. PEUs with hard segment ratio higher than 65 mole percent showed good shape recovery. These findings suggested that it is important to manipulate molecular structure of the copolymer soft segment for a desirable transition temperature and design optimal soft to hard segment ratio in PEU for good shape recovery. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号