首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant increase was observed in the circulating antibody titers of mice exposed to 9-GHz pulsed microwaves at an average power density of 10 mW/ cm2, two hours per day for five days compared with sham-irradiated animals. The mice were previously immunized with type III pneumococcal polysaccharide. Following irradiation, a portion of the immunized animals were challenged with virulent Streptococcus pneumoniae, type III. Ten days after challenge, mortality was essentially the same in the two groups, but during the ten day period, there was a noticeable increase in the survival time of the irradiated animals compared with the sham-irradiated animals, suggesting that the increased circulating antibody response afforded some degree of temporary protection to the animals.  相似文献   

2.
Mice were exposed in the far field in an anechoic chamber to 2,880-MHz pulsed microwaves 3 to 7.5 h daily, 5 days/week for 60 to 360 h. Three experiments were performed at average power densities of 5 mW/cm2 and six at 10 mW/cm2, corresponding to averaged specific absorption rates (SARs) of 2.25 and 4.50 mW/g, respectively. Each experiment consisted of eight mice, with a concurrently sham-exposed group of eight. In two of three studies at 5 mW/cm2, there was a significant increase in bone marrow cellularity in the microwave-exposed groups compared to the sham-exposed groups. Significant differences were occasionally seen in erythrocyte, leukocyte, and platelet values from microwave-exposed groups, but were not consistently observed. In one of six groups exposed at 10 mW/cm2, mean bone marrow cellularity was reduced significantly in the microwave-exposed mice; in another group, the lymphocyte count was increased. In only one exposure (10 mW/cm2 for 360 h) was any significant effect noted on serum proteins: a reduction to 5.1 +/- 0.3 g/dl in the exposed versus 5.6 +/- 0.4 g/dl in the sham-exposed mice. This was due to a decrease in alpha and beta globulins, with no effect on albumin or gamma globulin concentrations. No effect on bone marrow granulocyte/macrophage colony-forming units (CFU) was revealed following exposure of mice to pulsed microwaves at 5 mW/cm2. In one of four exposures at 10 mW/cm2, there was a significant increase in CFU-agar colonies. No significant effects of exposures at 10 mW/cm2 were observed on in vivo and in vitro assays of cell-mediated immune functions. No exposure-related histopathologic lesions were found from examination of several tissues and organs. Results of these series of exposures of mice at SARs of 2.25 and 4.50 mW/g indicated no consistent effects on the hematologic, immunologic, or histopathologic variables examined.  相似文献   

3.
C3H/HeA mice with high incidence of spontaneous breast cancer and Balb/c mice treated with 3,4-benzopyrene (BP) (by painting of the skin resulting in the development of skin cancer) were irradiated with 2,450-MHz microwaves (MW) in an anechoic chamber at 5 or 15 mW/cm2 (2 h daily, 6 sessions per week). C3H/HeA mice were irradiated from the 6th week of life, up to the 12th month of life. Balb/c mice treated with BP were irradiated either prior to (over 1 or 3 months) or simultaneously with BP treatment (over 5 months). The appearance of palpable tumors in C3H/HeA mice and of skin cancer in BP-treated Balb/c mice was checked every 2 weeks for 12 months. Two additional groups of mice were exposed to chronic stress caused by confinement or to sham-irradiation in an anechoic chamber; these served as controls. Irradiation with MWs at either 5 or 15 mW/cm2 for 3 months resulted in a significant lowering of natural antineoplastic resistance (mean number of lung neoplastic colonies was 2.8 ± 1.6 (SD) in controls, 6.1 ± 1.8 in mice exposed at 5 mW/cm2 and 10.8 ± 2.1 in those irradiated at 15 mW/cm2) and acceleration of development of BP-induced skin cancer (285 days in controls, 230 days for 5 mW/cm2 and 160 days for 15 mW/cm2). Microwave-exposed C3H/HeA mice developed breast tumors earlier than controls (322 days in controls, 261 days for 5 mW/cm2 and 219 days for 15 mW/cm2). A similar acceleration was observed in the development of BP-induced skin cancer in mice exposed simultaneously to BP and MWs (285 days in controls, 220 day for 5 mW/cm2 and 121 days for 15 mW/cm2). The acceleration of cancer development in all tested systems and lowering of natural antineoplastic resistance was similar in mice exposed to MW at 5 mW/cm2 or to chronic stress caused by confinement but differed significantly from the data obtained on animals exposed at 15 mW/cm2, where local thermal effects (“hot” spots) were possible.  相似文献   

4.
Female CD 1 mice were exposed from the thirty-fifth day of age for the remainder of their lives to 2.45 GHz, CW-microwave radiation at a power density of 3 or 10 m W/cm2 (SAR = 2.0 or 6.8 W/kg). Exposures took place 1 h/day, 5 day/week in an anechoic chamber at an ambient temperature of 22 °C and a relative humidity of 50%. There were 25 animals in each exposure group, and an equal number of controls were concurrently sham exposed. The average life span of animals exposed at 10 mW/cm2 was significantly shorter than that of sham-exposed controls (572 days vs. 706 days; P = .049; truncation >20%). In contrast, the average lifespan of the animals exposed at 3 mW/cm2 was slightly, but not significantly, longer (738 days) than that of controls (706 days). © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    Although exposure to nonionizing electromagnetic radiation has been reported to cause a variety of systemic alterations during embryonic development, there are few reports of the induction of specific physiologic or morphologic changes in the myocardium. This study was designed to examine the effects of microwave radiation on cardiogenesis in Japanese quail embryos exposed during the first eight days of development to 2.45-GHz continuous-wave microwaves at power densities of 5 or 20 mW/cm2. The specific absorption rates were 4.0 and 16.2 mW/g, respectively. The ambient temperature for each exposure was set to maintain the embryonated eggs at 37.5 °C. This did not preclude thermal gradients in the irradiated embryos since microwaves may not be uniformly absorbed. The test exposure levels did not induce changes in either the morphology of the embryonic heart or the ultrastructure of the myocardial cells. Analysis of the enzymatic activities of lactate dehydrogenase, glutamic oxaloacetic transaminase, and creatine phosphokinase failed to reveal any statistically significant differences between the nonexposed controls and those groups exposed to either 5 or 20 mW/cm2. The data indicate that 2.45-GHz microwave radiation at 5 or 20 mW/cm2 has no effect on the measured variables of the Japanese quail myocardium exposed during the first eight days of development.  相似文献   

    6.
    Rats exposed to microwaves prenatally (2,450 MHz, 10 mW/cm2, 3 h/day, days 5-20 of gestation) or perinatally (same as above plus days 2-20 postnatally) were examined by a neurobehavioral test battery on postnatal days 30 and 100. Body mass, locomotor activity, startle to acoustic and air-puff stimuli, fore- and hindlimb grip strength, negative geotaxis, reaction to thermal stimulation, and swimming endurance were assessed. The prenatally and the perinatally exposed rats (male and female) weighted more than sham-exposed rats at 30, but not at 100, days of age. In addition, the perinatally exposed animals had less swimming endurance at 30, but not at 100, days of age relative to sham-exposed rats. For the other measures, only the air-puff startle response was altered and was limited to the prenatally exposed female pups; ie, at postnatal day 30, the startle response was increased in magnitude, and at postnatal day 100, the response was decreased. No other reliable effects were observed. In a second experiment, rats treated as described above were examined for alterations in body mass, locomotor activity, reaction to air-puff stimuli, reaction to thermal stimulation, and swimming endurance at postnatal days 30-36. Again, perinatally exposed rats were larger in body mass and had less swimming endurance compared with sham-exposed rats. The latency to the air-puff startle response was longer in female pups exposed prenatally. These data indicate that altered endurance and gross motor activity result from perinatal exposure to microwave irradiation.  相似文献   

    7.
    The development of preimplantation embryos after exposure to microwave radiation was studied. Female CD-1 mice were induced to superovulate, mated, and exposed to 2.45-GHz microwave or sham radiation for 3 h at power densities of 9 mW/cm2 and 19 mW/cm2 on either day 2 or 3 of pregnancy (plug day was considered day 1). Another group of mice was exposed to heat stress by placing the dams in an environmental room at an ambient temperature of 38 °C and relative humidity at 62% for 3 h on day 2 of pregnancy. All groups were euthanized on day 4 of pregnancy and embryos were recovered by flushing excised uterine horns. Embryos were examined for abnormalities and classified by the developmental stages. They were then treated with hypotonic solution and dissociated for counting blastomeres. Heat stress caused stunted development of embryos, but no remarkable effect of microwave radiation could be found on the development of preimplantation embryos.  相似文献   

    8.
    Pregnant CD-1 mice were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 30 mW/cm2. The local specific absorption rate near the uterine area (deep colonic location), as determined from time-temperature profiles measured with a Vitek thermistor probe, was 40.2 mW/g. Groups of mice were exposed 8 hr per day through Days 1-6 or 6-15 of pregnancy. Other groups of animals were exposed to an elevated ambient temperature of 31 degrees C which increased the colonic temperature 2.3 degrees C, the same as that produced by the microwaves. Sham-irradiated groups of animals were treated exactly the same as the microwave-exposed animals. For the two conditions, temperature exposed and sham exposed, two groups of animals were used. One group was handled in the same manner as the microwave-irradiated group and the other group was not handled so as to evaluate the effects of stressing the animals by handling. Eleven groups of animals were used in the complete study: five groups for gestational Days 1-6, five groups for gestational Days 6-15, and one group of cage control animals. On Day 18 of gestation the dams of all experimental groups were sacrificed and their reproductive status was determined. The fetuses were examined for visceral and skeletal alterations. Brain cholinesterase activity and histology were evaluated in the groups exposed on Days 6-15. The results show that microwave radiation increases embryo lethality at the early stages of gestation (exposure Days 1-6). Fetal toxicity and teratogenicity were not significantly increased by exposure to microwaves on either Days 1-6 or 6-15 of gestation. Cholinesterase activity and histology of the brain of 18-day-old fetuses were not adversely affected.  相似文献   

    9.
    Specimens of human blood were exposed to 0, 4, 40, 100, and 200 Wkg-1 of 2.45 GHz microwave radiation for 20 minutes. The blood temperature was carefully controlled so that it rose from 37 to 40 degrees C. Cultured lymphocytes were examined for induced chromosomal damage but no effect in excess of background was observed.  相似文献   

    10.
    In this study, a human melanoma vaccine induced antibody responses in mice that varied significantly from animal to animal. BALB/c mice were immunized to a xenogenic human polyvalent melanoma vaccine that has been used in phase II clinical trials in over 600 patients. Mice were bled biweekly for up to 6 weeks to measure antibody responses. IgG antibody responses to the melanoma vaccine components were detectable within 2 weeks but were much stronger at 4 and 6 weeks. When the pooled sera were further analyzed by Western blot, a complex pattern of antigens was detected. When individual sera from identically immunized mice were assayed by Western blot, a consistent, reproducible pattern of antigen recognition was not seen. Rather, we found significantly different antibody responses among the mice. Both the intensity of antibody responses and the pattern of antigens recognized varied from animal to animal. Although there appeared to be immunodominant antigens that produced antibody responses in most mice, no single antigen induced antibody responses in all mice. These results demonstrate that polyvalent vaccines induce heterogeneous antibody responses in mice treated identically. Analysis of the response of selected melanoma patients immunized to the same vaccine revealed similar antibody responses to the antigens in the melanoma vaccine. Heterogeneity may hamper interpretation of vaccine immunogenicity and relevant tumor antigens in humans.  相似文献   

    11.
    Japanese quail, Coturnix coturnix japonica, eggs were subjected to 2.45-GHz CW microwave radiation at 5 mW/cm2 (SAR = 4.03 mW/g) during the first 12 days of embryogeny. Following hatching the exposed embryos, as well as nonexposed controls, were reared to 22 weeks of age. Humoral immune potential, as indicated by comparable anti-CRBC antibody, IgM and IgG, levels at 0, 4, and 7 days postimmunization in both exposed and control quail was not affected significantly. However, cell-mediated immune potential, measured by the reaction to intradermal injection of phytohemagglutinin-P in the wing web, was reduced in the exposed females, but not in the exposed males. Additionally, total leukocyte numbers and absolute circulating numbers of lymphocytes, monocytes, and heterophils were increased significantly only in the exposed females. These data show that exposure of Japanese quail during embryogenesis reduced cell-mediated immune potential and induced a general leukocytosis in females.  相似文献   

    12.
    Limits on the exposure to high-peak-power, short-duration microwave pulses have only recently been adopted. Additional data, however, are needed to understand the effects that may be produced by exposure to high-peak-power pulsed microwaves. Four male rhesus monkeys (Macaca mulatta) were trained on an operant task for food pellet reward to investigate the behavioral effects of very high-peak-power 5.62 GHz microwaves. The operant task required monkeys to pull one plastic lever on a variable interval schedule (VI-25 s) and then respond to color signals and pull a second lever to obtain food. The monkeys were conditioned to perform a color discrimination task using one of three colors displayed by a fiber-optic cable. A red signal was the discriminative stimulus for responding on the first lever. A response on the second lever when a green signal was presented (1 s duration) delivered a food pellet. If a response on the second lever was made in the presence of a white signal, a 30-s timeout occurred. While performing the behavioral task, the monkeys were exposed to microwave pulses produced by either a military radar (FPS-26A) operating at 5.62 GHz or the same radar coupled to a Stanford linear energy doubler (SLED) pulse-forming device (ITT-2972) that enhanced peak power by a factor of nine by adding a high power pulse to the radar pulse. The effects of both types of pulses were compared to sham exposure. Peak field power densities tested were 518, 1270, and 2520 W/cm2 for SLED pulses and 56, 128, and 277 W/cm2 for the radar pulses. The microwave pulses (radar or SLED) were delivered at 100 pps (2.8 μs radar pulse duration, ≈ 50 ns SLED pulse duration) for 20 min and produced averaged whole-body SARs of 2,4, or 6 W/kg. Compared to sham exposures, significant alterations of lever responding, reaction time, and earned food pellets occurred during microwave exposure at 4 and 6 W/kg but not 2 W/kg. There were no differences between radar or SLED pulses in producing behavioral effects. ©1994 Wiley-Liss, Inc.
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    We experimentally demonstrated for the first time that high-peak-power pulsed electromagnetic radiation of extremely high frequency (35.27 GHz; pulse widths, 100 and 600 ns; peak power, 20 kW) is capable of thermoelastic excitation of acoustic waves in model water-containing objects and muscle tissue of animals. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical estimates and are a complex nonlinear function of electromagnetic energy input. The propagation velocities of acoustic pulses in water-gelatin models and isolated muscle tissue of animals are close to reference data. The excitation of acoustic waves in biological systems exposed to high-peak-power pulsed microwaves is an important phenomenon that makes an essential contribution to understanding the mechanisms of biological effects in these electromagnetic fields.  相似文献   

    14.
    The effects of microwave irradiation at two different frequencies (1.28 and 5.62 GHz) on observing-behavior of rodents were investigated. During daily irradiation, eight male hooded rats performed on a two-lever task; depression of one lever produced one of two different tones and the other lever produced food when depressed in the presence of the appropriate tone. At 5.62 GHz, the observing-response rate was not consistently affected until the power density approximated 26 mW/cm2 at 1.28 GHz, the observing-response rate of all rats was consistently affected at a power density of 15 mW/cm2. The respective whole-body specific absorption rates (SARs) were 4.94 and 3.75 W/Kg. Measurements of localized SAR in a rat-shaped model of simulated muscle tissue revealed marked differences in the absorption pattern between the two frequencies. The localized SAR in the model's head at 1.28 GHz was higher on the side distal to the source of radiation. At 5.62 GHz the localized SAR in the head was higher on the proximal side. It is concluded that the rat's observing behavior is disrupted at a lower power density at 1.28 than at 5.62 GHz because of deeper penetration of energy at the lower frequency, and because of frequency-dependent differences in anatomic distribution of the absorbed microwave energy.  相似文献   

    15.
    Microwave evoked body movements were studied in mice. A resonant cavity was used to provide head and neck exposure of the mouse to pulsed and gated continuous wave (CW) 1.25 GHz microwaves. No difference in response to pulsed and gated CW stimuli of equal average power was found. The incidence of the microwave evoked body movements increased proportionally with specific absorption (dose) when the whole-body average specific absorption rate was at a constant level (7300 W/kg). Under a constant average specific absorption rate, the response incidence reached a plateau at 0.9 kJ/kg. For doses higher than 0.9 kJ/kg, response incidence was proportional to the specific absorption rate and reached a plateau at 900 W/kg. Body movements could be evoked by a single microwave pulse. The lowest whole-body specific absorption (SA) tested was 0.18 kJ/kg, and the corresponding brain SA was 0.29 kJ/kg. Bulk heating potentials of these SAs were less than 0.1 °C. For doses higher than 0.9 kJ/kg, the response incidence was also proportional to subcutaneous temperature increment and subcutaneous heating rate. The extrapolated absolute thresholds (0% incidence) were 1.21 °C temperature increment and 0.24 °C/s heating rate. Due to high subcutaneous heating rates, these microwaves must be perceived by the mouse as an intense thermal sensation but not a pain sensation because the temperature increment was well below the threshold for thermal pain. Results of the present study should be considered in promulgation of personnel protection guideline against high peak power but low average power microwaves. © 1994 Wiley-Liss, Inc.  相似文献   

    16.
    Irradiation by pulsed microwaves (9.4 GHz, 1 microsecond pulses at 1,000/s), both with and without concurrent amplitude modulation (AM) by a sinusoid at discrete frequencies between 14 and 41 MHz, was assessed for effects on the immune system of Balb/C mice. The mice were immunized either by sheep red blood cells (SRBC) or by glutaric-anhydride conjugated bovine serum albumin (GA-BSA), then exposed to the microwaves at a low rms power density (30 microW/cm2; whole-body-averaged SAR approximately 0.015 W/kg). Sham exposure or microwave irradiation took place during each of five contiguous days, 10 h/day. The antibody response was evaluated by the plaque-forming cell assay (SRBC experiment) or by the titration of IgM and IgG antibodies (GA-BSA experiment). In the absence of AM, the pulsed field did not greatly alter immune responsiveness. In contrast, exposure to the field under the combined-modulation condition resulted in significant, AM-frequency-dependent augmentation or weakening of immune responses.  相似文献   

    17.
    18.
    White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal responses based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.  相似文献   

    19.
    In utero exposure to microwave radiation and rat brain development   总被引:1,自引:0,他引:1  
    Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.  相似文献   

    20.
    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgeulc animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibody preparation.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号