首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic acids) with high molecular weights have been synthesized by direct condensation polymerization of lactic acid. These polymers have good mechanical properties and can be processed into products such as cups, film, and fiber, which can be used as compostable materials. This polymerization method can be applied to the synthesis of copolymers of lactic acid and other hydroxyacids. The properties of poly(lactic acid) and copolymers synthesized by the direct process are different from those of polymers obtained by the conventional lactide process.  相似文献   

2.
Fibers of poly(lactic acid) (PLA) produced by two-step melt-spinning are studied. The PLA resin used contains a 98:02 ratio of l:d stereochemical centers. A range of processing conditions is explored. The cold-draw ratio is varied from 1 to 8 under conditions of constant heating. In addition, three draw ratios are studied at three different heating rates. The thermal, mechanical, and morphological properties of the resultant fibers are determined. Properties can be widely manipulated through a combination of draw ratio and draw temperature. A maximum tensile strength and modulus of 0.38 GPa and 3.2 GPa, respectively, are obtainable. Using atomic force microscopy, the fiber morphology is found to be highly fibrillar; microfibril diameters are roughly 40 nm in diameter. Very high draw ratios cause the fiber to turn from shiny and translucent to dull and white; this transition is attributed to surface crazing. Significant molecular weight loss is observed upon processing (weight-average molecular weights drops between 27% and 43%).  相似文献   

3.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

4.
Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s   总被引:2,自引:0,他引:2  
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations.  相似文献   

5.
In this study, blends of poly (lactic acid) (PLA) with poly(ethylene/butylene succinate) (Bionolle) have been investigated for their thermal and mechanical properties as a function of the concentration of Bionolle. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tensile tests were used to characterize the blends. From the results of the DMA and DSC, it was found that this blend system was not miscible within the compositions studied. DSC results showed that adding Bionolle aids in crystallization of PLA. It was observed that increasing the Bionolle concentration led to a slight increase in the strain-at-break of the blends but a decrease in the Young’s modulus and ultimate tensile strength. Biaxially oriented films showed an increase in tensile strength, modulus, and strain-at-break.  相似文献   

6.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

7.
Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites   总被引:1,自引:0,他引:1  
Poly(lactic acid) (PLA) and sugar beet pulp (SBP) were compounded by twin-screw extrusion and injection molded into composite forms. Specific mechanical energy decreased with the addition of SBP during processing. PLA–SBP composites retained more tensile strength than expected based on the Nicolais–Narkis model especially at high levels of SBP suggesting adhesion between SBP and PLA. The thermal characteristics of PLA were not affected by thermo-mechanical processing or by the incorporation of SBP up to 30% weight basis. PLA and PLA–SBP composites had similar tensile properties to other thermoplastic resins and may be used as a cost-competitive replacement.
Victoria L. FinkenstadtEmail:
  相似文献   

8.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

9.
A Literature Review of Poly(Lactic Acid)   总被引:32,自引:0,他引:32  
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.  相似文献   

10.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

11.
12.
Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature. However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies: in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with no decrease in elongation at failure.  相似文献   

13.
Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous two phase system.
V. L. FinkenstadtEmail:
  相似文献   

14.
Seeds of red pepper and tomato were sowed and cultivated in a soil blended with powdery poly(l-lactide) (PLLA), and poly(butylene succinate) (PBS). PBS depressed the growth of the two plants significantly even at a concentration as low as 5%, whereas PLLA up to 35% affected negligibly or even boosted the growth of the two plants. pH and number of microbial cells in the soil after 80 days of cultivation were almost the same independently whether the soil was blended with the two polymers or not. In contrast, the molecular weight of PBS decreased much faster than that of PLLA. Because succinic acid and 1,4-butane diol, from which PBS was synthesized, exhibited toxicity to both plant and animal cells to retard the germination rate of young radish seeds and to deform the morphology of HeLa cells significantly [1], the monomers and the oligomers produced from the PBS degradation should have a detrimental influence on the growth of the two plants.  相似文献   

15.
16.
The biodegradability of lactic acid based poly(ester-urethanes) was studied using the headspace test method, which was performed at several elevated temperatures. The poly(ester-urethanes) were prepared using a straight two-step lactic acid polymerization process. The lactic acid is first condensation polymerized to a low molecular weight hydroxyl-terminated telechelic prepolymer and then the molecular weight is increased with a chain extender such as diisocyanate. In the biodegradation studies the effect of different stereostructures (different amounts of D-units in the polymer chain), the length of ester units, and the effect of crosslinking on the biodegradation rate were studied. The results indicate that poly(ester-urethanes) do not biodegrade at 25‡C, but at elevated temperatures they biodegrade well. The different stereostructures and crosslinking have a strong influence on the biodegradation rate. The length of ester units in the polymer chain also affects the biodegradation rate, but much less than crosslinking and stereostructure.  相似文献   

17.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   

18.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

19.
Poly(aspartic acid): Synthesis, biodegradation, and current applications   总被引:7,自引:0,他引:7  
Poly(aspartic acid) is a biodegradable, water-soluble polymer that is valuable in numerous industrial applications. A variety of synthetic methods can be utilized to prepare poly(aspartic acid) and related polymeric materials with a range of tailored physical and chemical characteristics. This review of current investigative and patent literature describes methods of synthesis, biodegradative studies, and important current and potential applications of both poly(aspartic acid) homopolymers and copolymers.  相似文献   

20.
Poly(lactic acid) (PLA) has gained considerable attention nowadays as a biocompatible polymer owing to its advantage of being prepared from renewable resources. PLA exhibits excellent tensile strength, fabricability, thermal plasticity and biocompatibility properties comparable to many petroleum based plastics. However, low heat distortion temperature, brittleness and slow crystallization rate limit the practical applications of PLA. In order to address these limitations, an attempt has been made in the current work to prepare binary blends of PLA with ethylene vinyl acetate (EVA) at different compositions via melt mixing technique. Systematic investigation on the mechanical properties, thermal degradation and crystallization behavior for PLA-EVA blends was carried out. The impact strength of binary blends of PLA–EVA was found to increase significantly by 176% for 15 wt% of EVA compared to virgin PLA. This is due to the strong interfacial adhesion among PLA and EVA resulting in brittle to ductile transition. Scanning electron microscopy analysis for impact fractured surfaces of binary blends of PLA implied the toughening effect of PLA by EVA. Thermogravimetry analysis results revealed that the activation energy of PLA–EVA blends decreased with increase in EVA content in the PLA matrix. While, differential scanning calorimetry results obtained for PLA–EVA blends revealed the improvement in crystallinity when compared with neat PLA. The effect of EVA on non-isothermal melt crystallization kinetics of PLA was also examined via DSC at various heating rates. Decreasing trend in the t1/2 values indicated the faster rate of crystallization mechanism after addition of EVA in the PLA matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号