首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gale AJ  Heeb MJ  Griffin JH 《Blood》2000,96(2):585-593
The anticoagulant human plasma serine protease, activated protein C (APC), inactivates blood coagulation factors Va (FVa) and VIIIa. The so-called autolysis loop of APC (residues 301-316, equivalent to chymotrypsin [CHT] residues 142-153) has been hypothesized to bind FVa. In this study, site-directed mutagenesis was used to probe the role of the charged residues in this loop in interactions between APC and FVa. Residues Arg306 (147 CHT), Glu307, Lys308, Glu309, Lys311, Arg312, and Arg314 were each individually, or in selected combinations, mutated to Ala. The purified recombinant protein C mutants were characterized using activated partial thromboplastin time (APTT) clotting assays and FVa inactivation assays. Mutants 306A, 308A, 311A, 312A, and 314A had mildly reduced anticoagulant activity. Based on FVa inactivation assays and APTT assays using purified Gln506-FVa and plasma containing Gln506-FV, it appeared that these mutants were primarily impaired for cleavage of FVa at Arg506. Studies of the quadruple APC mutant (306A, 311A, 312A, and 314A) suggested that the autolysis loop provides for up to 15-fold discrimination of the Arg506 cleavage site relative to the Arg306 cleavage site. This study shows that the loop on APC of residues 306 to 314 defines an FVa binding site and accounts for much of the difference in cleavage rates at the 2 major cleavage sites in FVa. (Blood. 2000;96:585-593)  相似文献   

2.
Norstrøm E  Thorelli E  Dahlbäck B 《Blood》2002,100(2):524-530
In factor V (FV) Cambridge (Arg306Thr) and Hong Kong (Arg306Gly), a cleavage site for anticoagulant activated protein C (APC), which is crucial for the inactivation of FVa, is lost. Although patients carrying FV Hong Kong have a normal APC response, those with FV Cambridge were reported to be APC resistant. To elucidate the molecular characteristics of the 2 FV mutants, we recreated them in a recombinant system and evaluated their functional properties. The 2 FV variants yielded identical APC resistance patterns, with APC responses being intermediate to those of wild-type FV and FV Leiden (Arg506Gln), which is known to be associated with the APC resistance phenotype. In the absence of protein S, APC mediated FVa inactivation curves obtained with the 2 variants were identical, resulting in partial FVa inactivation. In the presence of protein S, both FVa variants were almost completely inactivated because of protein S stimulation of the cleavage at Arg679. In a FVIIIa degradation system, both FV variants demonstrated slightly impaired APC cofactor activity. The ability of APC to cleave at Arg506 and at Arg679 in FVa Cambridge and Hong Kong and the slight decrease in APC cofactor activity of the 2 FV variants may explain the low thrombotic risk associated with these Arg306 mutations. In conclusion, we demonstrate that recombinant FV Cambridge and Hong Kong behave identically in in vitro assays and provide a mechanism for the low thrombotic risk associated with these FV mutations.  相似文献   

3.
Inherited resistance to activated protein C (APC) is the most common genetic risk factor of venous thrombosis. It is caused by a single point mutation in the factor (F)V gene which predicts replacement of Arg506 with a Gln (FVR506Q, FV: Q506 or FV Leiden). This mutation affects the function of the protein C system, a physiologically important natural anticoagulant pathway. APC inhibits coagulation by cleaving a limited number of peptide bonds in both intact and activated forms of factor V (FV/FVa) and factor VIII (FVIII/FVIIIa). Degradation of FVa by APC is stimulated by protein S, whereas inactivation of FVIIIa requires the synergistic cofactor function of protein S and FV proteolytically modified by APC. Thus, FV has the potential to express opposing functions, as a procoagulant after cleavage by thrombin or FXa and as an anticoagulant after cleavage by APC. The FVR506Q mutation not only confers partial resistance of FVa to APC but also impairs the degradation of FVIIIa because APC-mediated cleavage of FV at Arg506 is required for expression of the anticoagulant activity of FV. The impaired degradation of both FVIIIa and FVa yield a hypercoagulable state conferring a lifelong increased risk of thrombosis. The FV mutation is common in Caucasians, whereas it is rarely found among other groups worldwide. In patients with severe thrombophilia having other inherited defects such as deficiencies of protein S, protein C, or antithrombin, APC resistance is often found as a contributing genetic risk factor. Individuals with combined genetic defects have a high risk of thrombosis, and it is now generally accepted that thrombophilia is a multigenetic disease.  相似文献   

4.
Thorelli E  Kaufman RJ  Dahlbäck B 《Blood》1999,93(8):2552-2558
Activated protein C (APC) inhibits coagulation by cleaving and inactivating procoagulant factor Va (FVa) and factor VIIIa (FVIIIa). FV, in addition to being the precursor of FVa, has anticoagulant properties; functioning in synergy with protein S as a cofactor of APC in the inhibition of the FVIIIa-factor IXa (FIXa) complex. FV:Q506 isolated from an individual homozygous for APC-resistance is less efficient as an APC-cofactor than normal FV (FV:R506). To investigate the importance of the three APC cleavage sites in FV (Arg-306, Arg-506, and Arg-679) for expression of its APC-cofactor activity, four recombinant FV mutants (FV:Q306, FV:Q306/Q506, FV:Q506, and FV:Q679) were tested. FV mutants with Gln (Q) at position 506 instead of Arg (R) were found to be poor APC-cofactors, whereas Arg to Gln mutations at positions 306 or 679 had no negative effect on the APC-cofactor activity of FV. The loss of APC-cofactor activity as a result of the Arg-506 to Gln mutation suggested that APC-cleavage at Arg-506 in FV is important for the ability of FV to function as an APC-cofactor. Using Western blotting, it was shown that both wild-type FV and mutant FV was cleaved by APC during the FVIIIa inhibition. At optimum concentrations of wild-type FV (11 nmol/L) and protein S (100 nmol/L), FVIIIa was found to be highly sensitive to APC with maximum inhibition occurring at less than 1 nmol/L APC. FV:Q506 was inactive as an APC-cofactor at APC-concentrations 相似文献   

5.
A missense mutation, FV-Ile359Thr (FV Liverpool), associated with thrombosis has recently been described. This mutation creates an additional potential N-linked glycosylation site (Asn-X-Ser/Thr) in factor V (FV) at Asn357 that could interfere with secretion and/or protein interactions. To investigate the molecular pathology of FV-Ile359Thr, the mutation was created by site-directed mutagenesis and expressed together with other mutations that could help explain the phenotype (FV-Arg306Gln/Ile359Thr/Arg679Gln, FV-Ile359Thr/Arg506Gln/Arg679Gln, and FV-Asn357Gln/Ile359Thr). The FV-Ile359Thr was secreted normally and had full procoagulant activity. Western blot analysis showed that FV-Ile359Thr migrated more slowly, while the FV-Asn357Gln/Ile359Thr was indistinguishable from FV-wild type (FV-WT), indicating that FV-Ile359Thr was expressed with an additional carbohydrate chain. Activated protein C (APC)-mediated inactivation in an FVa degradation assay showed that the Ile359Thr mutation significantly reduced the cleavage at Arg306 both in the presence and absence of protein S, whereas the cleavage at Arg506 was unaffected. When tested in an FVIIIa degradation assay, the FV-Ile359Thr variant exhibited equally low APC cofactor activity as FV Leiden (FVArg506Gln). In conclusion, the Ile359Thr mutation appears to affect anticoagulation by 2 mechanisms, impeding the APC-mediated down-regulation of the FVa molecule and additionally being a poor APC cofactor for the down-regulation of FVIIIa. These findings explain the association of the FV-Ile359Thr mutation with thrombosis.  相似文献   

6.
Kalafatis  M; Haley  PE; Lu  D; Bertina  RM; Long  GL; Mann  KG 《Blood》1996,87(11):4695-4707
Human factor V is activated to factor Va by alpha-thrombin after cleavages at Arg709, Arg1018, and Arg1545. Factor Va is inactivated by activated protein C (APC) in the presence of a membrane surface after three sequential cleavages of the heavy chain. Cleavage at Arg506 provides for efficient exposure of the inactivating cleavages at Arg306 and Arg679. Membrane-bound factor V is also inactivated by APC after cleavage at Arg306. Resistance to APC is associated with a single nucleotide change in the factor V gene (G1691-->A) corresponding to a single amino acid substitution in the factor V molecule: Arg506-->Gln (factor V Leiden). The consequence of this mutation is a delay in factor Va inactivation. Thus, the success of the APC-resistance assay is based on the fortuitous activation of factor V during the assay. Plasmas from normal individuals (1691 GG) and individuals homozygous for the factor V mutation (1691 AA) were diluted in a buffer containing 5 mmol/L CaCl2, phospholipid vesicles (10 micromol/L), and APC. APC, at concentrations < or = 5.5 nmol/L, prevented clot formation in normal plasma, whereas under similar conditions, a clot was observed in plasma from APC-resistant individuals. Gel electrophoresis analyses of factor V fragments showed that membrane-bound factor V is primarily cleaved at Arg306 in both plasmas. However, whereas in normal plasma production of factor Va heavy chain is counterbalanced by fast degradation after cleavage at Arg506/Arg306, in the APC-resistant individuals' plasma, early generation and accumulation of the heavy chain portion of factor Va occurs as a consequence of delayed cleavage at Arg306. At elevated APC concentrations (>5.5 nmol/L), no clot formation was observed in either plasma from normal or APC-resistant individuals. Our data show that resistance to APC in patients with the Arg506-->Gln mutation is due to the inefficient degradation (inactivation) of factor Va heavy chain by APC.  相似文献   

7.
Castoldi E  Brugge JM  Nicolaes GA  Girelli D  Tans G  Rosing J 《Blood》2004,103(11):4173-4179
Activated protein C (APC) resistance is a major risk factor for venous thrombosis. Factor V (FV) gene mutations like FV(Leiden) (R506Q) and FV(R2) (H1299R) may cause APC resistance either by reducing the susceptibility of FVa to APC-mediated inactivation or by interfering with the cofactor activity of FV in APC-catalyzed FVIIIa inactivation. We quantified the APC cofactor activity expressed by FV(Leiden) and FV(R2) and determined the relative contributions of reduced susceptibility and impaired APC cofactor activity to the APC resistance associated with these mutations. Plasmas containing varying concentrations of normal FV, FV(Leiden), or FV(R2) were assayed with an APC resistance assay that specifically measures the APC cofactor activity of FV in FVIIIa inactivation, and with the activated partial thromboplastin time (aPTT)-based assay, which probes both the susceptibility and APC cofactor components. FV(R2) expressed 73% of the APC cofactor activity of normal FV, whereas FV(Leiden) exhibited no cofactor activity in FVIIIa inactivation. Poor susceptibility to APC and impaired APC cofactor activity contributed equally to FV(Leiden)-associated APC resistance, whereas FV(R2)-associated APC resistance was entirely due to the reduced APC cofactor activity of FV(R2). Thrombin generation assays confirmed the importance of the anticoagulant activity of FV and indicated that FV(Leiden) homozygotes are exposed to a higher thrombotic risk than heterozygotes because their plasma lacks normal FV acting as an anticoagulant protein.  相似文献   

8.
9.
We investigated the role of thrombophilic mutations as possible modifiers of the clinical phenotype in severe factor VII (FVII) deficiency. Among 7 patients homozygous for a cross-reacting material-negative (CRM-) FVII defect (9726+5G>A, FVII Lazio), the only asymptomatic individual carried FV Leiden. Differential modulation of FVII levels by intragenic polymorphisms was excluded by a FVII to factor X (FX) gene haplotype analysis. The coagulation efficiency in the FV Leiden carrier and a noncarrier was evaluated by measuring FXa, FVa, and thrombin generation after extrinsic activation of plasma in the absence and presence of activated protein C (APC). In both patients coagulation factor activation was much slower and resulted in significantly lower amounts of FXa and thrombin than in a normal control. However, more FXa and thrombin were formed in the plasma of the patient carrying FV Leiden than in the noncarrier, especially in the presence of APC. These results were confirmed in FV-FVII doubly deficient plasma reconstituted with purified normal FV or FV Leiden. The difference in thrombin generation between plasmas reconstituted with normal FV or FV Leiden gradually decreased at increasing FVII concentration. We conclude that coinheritance of FV Leiden increases thrombin formation and can improve the clinical phenotype in patients with severe FVII deficiency.  相似文献   

10.
Recently, new missense mutations in the activated protein C (APC) cleavage sites of human factor V (FV) distinct from the R506Q (FV Leiden) mutation have been reported. These mutations affect the APC cleavage site at arginine (Arg) 306 in the heavy chain of activated FV. Whether these mutations result in APC resistance and are associated with a risk of thrombosis is not clear. The main objective of the present study was to identify the APC-resistant phenotype of FV molecules with different mutations in APC cleavage sites. To study this, recombinant FV mutants were reconstituted in FV-deficient plasma, after which normalized APC-sensitivity ratios (n-APC-SRs) were measured in activated partial thromboplastin time-based and Russell's Viper Venom time-based APC-resistance tests. The mutations introduced in FV were R306G, R306T, R506Q, R679A and combinations of these mutations. Based on the APC-sensitivity ratios, we conclude that the naturally occurring mutations at Arg306 (i.e. FV HongKong and FV Cambridge) result in a mildly reduced sensitivity for APC (n-APC-SR, 0.74-0.87), whereas much lower values (n-APC-SR, 0.41-0.51) are obtained for the mutation at Arg506 (FV Leiden). No effect on the n-APC-SR was observed for the recombinant FV mutant containing the single Ala679 mutation. Because reduced sensitivity for APC, not due to FV Leiden, is a risk factor for venous thrombosis, these data suggest that mutations at Arg306 might be associated with a mild risk of venous thrombosis.  相似文献   

11.
Lu  D; Kalafatis  M; Mann  KG; Long  GL 《Blood》1996,87(11):4708-4717
The proteolytic cleavage and subsequent inactivation of recombinant human factor VIII (rhFVIII) and human factor VIIIa (rhFVIIIa) by recombinant human activated protein C (rAPC) was analyzed in the presence and absence of human protein S and human factor V (FV). Membrane-bound rhFVIIIa spontaneously looses most of its initial cofactor activity after 15 minutes of incubation at pH 7.4. The remaining activity can be eliminated after incubation with rAPC. Complete inactivation of the membrane-bound rhFVIII and rhFVIIIa by APC correlates with cleavage at Arg336. The inactivation of rhFVIII and human plasma FV by rAPC were also compared. Under similar experimental conditions, complete inactivation of membrane-bound FVIII (60 nmol/L) by rAPC (10 nmol/L) requires 4 hours of incubation, in contrast to 5 minutes for FV (60 nmol/L). The presence of protein S (100 nmol/L) enhances rhFVIII inactivation by rAPC by 6.4-fold and FVa inactivation by twofold, whereas membrane-bound FV showed no protein S dependence during inactivation. The addition of human FV to the APC/protein S inactivation mixture increases by approximately twofold the rate of inactivation of rhFVIII. The effect of FV on the rhFVIII inactivation by APC is protein S-dependent, because FV alone has no effect on the inactivation rate of rhFVIII by APC. Western blotting using a monoclonal antibody that recognizes an epitope between amino acid residues 307 and 506 of human FV showed that FV was completely cleaved by APC at the beginning of the rhFVIII inactivation process. These data suggest that FV fragments derived from the B region of the procofactor after incubation of the membrane-bound procofactor with APC, but not intact single-chain FV, stimulate APC activity in the presence of protein S. rhFVIII, FV, and rhFVIIIa were not inactivated by Glu20-- >Ala-substituted rAPC (rAPCgamma20A), and membrane-bound factor Va was only partially inactivated. Our data suggest that (1) FV and FVa are the physiologically significant substrates for APC inactivation and (2) membranes-bound APC-treated FV is a cofactor for the APC inactivation of rhFVIII only in the presence of the intact form of protein S.  相似文献   

12.
A chromogenic assay for activated protein C resistance   总被引:2,自引:0,他引:2  
Summary. Resistance to activated protein C (APC) diagnosed on the basis of prolongation of clotting time in an activated partial thromboplastin time (aPTT) assay is now considered a major cause of inherited thrombophilia. The majority of patients with APC resistance carry a factor V molecule with a point mutation at one APC cleavage site (Arg506Gln) which prevents the optimal inactivation of activated factor V by APC. To overcome the limitations of aPTT-based assays in the diagnosis of APC resistance, we have developed a chromogenic assay which is based on the capacity of APC to limit the generation of factor Xa by inactivating factor Villa in plasma. The ratio of the factor Xa amidolytic activity in a sample without APC to its factor Xa activity with the addition of APC reflects the response of the plasma coagulation system to APC. The normal range in 44 healthy individuals was 1.62-2.06. APC response ratios as measured by the chromogenic assay correlated with ratios measured by the aPTT assay and were below the normal range in 23.24 individuals with Arg506Gln mutant factor V from three different families with familial thrombosis and from 11 unrelated asymptomatic individuals. In reconstitu-tion experiments, purified factor V corrected the decreased APC response in plasma samples from patients with the Arg506Gln mutation as well as with factor V deficiency, and increased the APC response in normal plasma, whereas the addition of activated factor V had no enhancing effect.  相似文献   

13.
Le  DT; Griffin  JH; Greengard  JS; Mujumdar  V; Rapaport  SI 《Blood》1995,85(7):1704-1711
The original activated partial thromboplastin time-based assay for activated protein C (APC)-resistant factor Va (FVa) requires carefully prepared fresh plasma and cannot be used in patients receiving warfarin or in patients with antiphospholipid antibodies. A new test is described here that circumvents these limitations and distinguishes without overlap heterozygotes for APC-resistant FVa from persons with normal FV. A diluted test plasma is incubated with an FV-deficient substrate plasma and tissue factor and then clotted with Ca2+ or Ca2+ plus APC. Test results are independent of the FV level or the dilution of the test plasma used. Of 39 controls, 37 gave normal results. Two controls (5%) gave results indicative of APC resistant FVa and on DNA analysis were found to be heterozygous for FV R506Q. Twenty of 21 randomly selected patients receiving warfarin gave normal results. In the single patient with abnormal results, heterozygous FV R506Q was confirmed by DNA analysis. Two of 15 patients with protein S deficiency and 5 of 29 patients with a lupus anticoagulant had abnormal results. APC resistance caused by FV R506Q was confirmed in the five of these seven patients available for DNA analysis. APC-resistant FVa was also detected in 10 of 21 (46%) stored plasma from unrelated patients with venous thrombosis and negative earlier evaluation for a lupus anticoagulant or a deficiency of protein C, protein S, or antithrombin, which confirms a high incidence of this defect among patients with venous thrombosis.  相似文献   

14.
Kalafatis M  Simioni P  Tormene D  Beck DO  Luni S  Girolami A 《Blood》2002,99(11):3985-3992
A 44-year-old woman with a history of severe thrombotic manifestations presented with a markedly reduced activated protein C-sensitivity ratio (APC-SR). DNA sequencing of and around the regions encoding the APC cleavage sites in the factor Va molecule excluded the presence of the factor VLeiden mutation and of other known genetic mutations. No antiphospholipid antibodies were present in the patient's plasma and both prothrombin time and activated partial thromboplastin time were normal. The total immunoglobulin fraction was isolated from the patient's plasma and found to induce severe APC resistance when added to normal plasma and to factor V-deficient plasma supplemented with increasing concentrations of factor V. Immunoblotting and immunoprecipitation experiments with the total immunoglobulin fraction purified from the patient's plasma demonstrated that the antibody recognizes factor V, is polyclonal, and has conformational epitopes on the entire factor V molecule (heavy and light chains, and B region). Thus, the immunoglobulin fraction interferes with the anticoagulant pathway involving factor V. The inhibitor was isolated by sequential affinity chromatography on protein G-Sepharose and factor V-Sepharose. The isolated immunoglobulin fraction inhibited factor Va inactivation by APC because of impaired cleavage at Arg306 and Arg506 of the heavy chain of the cofactor. The isolated immunoglobulin fraction was also found to inhibit the cofactor effect of factor V for the inactivation of factor VIII by the APC/protein S complex. Our data provide for the first time the demonstration of an antifactor V antibody not related to the presence of antiphospholipid antibodies, which is responsible for thrombotic rather than hemorrhagic symptoms.  相似文献   

15.
Effect of hyperhomocysteinemia on protein C activation and activity   总被引:1,自引:1,他引:1  
Hyperhomocysteinemia has been proposed to inhibit the protein C anticoagulant system through 2 mechanisms: decreased generation of activated protein C (APC) by thrombin, and resistance to APC caused by decreased inactivation of factor Va (FVa). We tested the hypotheses that generation of APC by thrombin is impaired in hyperhomocysteinemia in monkeys and that hyperhomocysteinemia produces resistance to APC in monkeys, mice, and humans. In a randomized crossover study, cynomolgus monkeys were fed either a control diet or a hyperhomocysteinemic diet for 4 weeks. Plasma total homocysteine (tHcy) was approximately 2-fold higher when monkeys were on the hyperhomocysteinemic diet than when they were on the control diet (9.8 +/- 2.0 microM versus 5.6 +/- 1.0 microM; P <.05). After infusion of human thrombin (25 microg/kg of body weight), the peak level of plasma APC was 136 +/- 16 U/mL in monkeys fed the control diet and 127 +/- 13 U/mL in monkeys fed the hyperhomocysteinemic diet (P >.05). The activated partial thromboplastin time was prolonged to a similar extent by infusion of thrombin in monkeys fed the control diet and in those fed the hyperhomocysteinemic diet. The sensitivity of plasma FV to human APC was identical in monkeys on control diet and those on hyperhomocysteinemic diet. We also did not detect resistance of plasma FV to APC in hyperhomocysteinemic mice deficient in cystathionine beta-synthase (plasma tHcy, 93 +/- 16 microM) or in human volunteers with acute hyperhomocysteinemia (plasma tHcy, 45 +/- 6 microM). Our findings indicate that activation of protein C by thrombin and inactivation of plasma FVa by APC are not impaired during moderate hyperhomocysteinemia in vivo.  相似文献   

16.
Cardiolipin enhances protein C pathway anticoagulant activity   总被引:3,自引:0,他引:3  
The anticoagulant activity of activated protein C (APC) was studied using factor Xa-1-stage assays of both the procoagulant and anticoagulant activities of phospholipid vesicles containing phosphatidylserine or cardiolipin as active phospholipids. In the absence of APC, phosphatidylserine vesicles showed higher procoagulant activity than cardiolipin vesicles whereas cardiolipin vesicles supported APC-dependent anticoagulant activity better than phosphatidylserine vesicles. Enhancement of APC anticoagulant activity in plasma by cardiolipin was markedly stimulated by the APC cofactor protein S. In purified reaction mixtures, cardiolipin in phospholipid vesicles dose-dependently enhanced APC anticoagulant activity. This effect of cardiolipin was partially dependent on protein S, and immunoblotting studies showed that cardiolipin enhanced the APC-mediated cleavage of the factor Va heavy chain at Arg506 and Arg306. In solid-phase binding assays, increasing amounts of cardiolipin in multicomponent phospholipid vesicles increased the affinity for protein S and to a lesser extent APC. These data are consistent with the hypothesis that cardiolipin stimulates the anticoagulant protein C pathway by increasing the affinity of phospholipid surfaces for protein S:APC and by enhancing inactivation of factor Va by APC due to cleavages at Arg506 and Arg306 in factor Va. Based on this, it is further hypothesized that anti-cardiolipin or anti-oxidized cardiolipin antibodies may be thrombogenic because they inhibit phospholipid-dependent expression of the anticoagulant protein C pathway.  相似文献   

17.
Activated protein C (APC) binds to its substrates activated factor V (FVa) and activated factor VIII (FVIIIa) with a basic exosite that consists of loops 37, 60, 70 and the autolysis loop. These loops have a high density of basic residues, resulting in a positive charge on the surface of APC. Many of these residues are important in the interaction of APC with FVa and FVIIIa. The current study focused on the function of the autolysis loop in the interaction with FVIIIa. This loop was previously shown to interact with FVa, and it inhibits APC inactivation by plasma serpins. Charged residues of the autolysis loop were individually mutated to alanine and the activity of these mutants was assessed in functional FVIIIa inactivation assays. The autolysis loop was functionally important for FVIIIa inactivation. Mutation of R306, K311 and R314 each resulted in significantly reduced FVIIIa inactivation. The inactivating cleavages of FVIIIa at R336 and R562 were affected equally by the mutations. Protein S and FV stimulated cleavage at R562 more than cleavage at R336, independent of mutations in the autolysis loop. Together, these results confirmed that the autolysis loop plays a significant role as part of the basic exosite on APC in the interaction with FVIIIa.  相似文献   

18.
Congenital and acquired activated protein C resistance   总被引:2,自引:0,他引:2  
Resistance to the anticoagulant action of activated protein C, APC resistance, is a highly prevalent risk factor for venous thrombosis among individuals of Caucasian origin. In most cases, APC resistance is associated with a single missense mutation in the gene for coagulation factor V (FV (Leiden)), which predicts the replacement of Arg (506) with a Gln at one of the cleavage sites for APC in factor V. Factor V is a Janus-faced protein with dual functions, serving as an essential nonenzymatic cofactor in both pro- and anticoagulant pathways. Procoagulant factor Va, generated after proteolysis by thrombin or factor Xa, is a cofactor to factor Xa in the activation of prothrombin, whereas anticoagulant factor V, generated after proteolysis by APC, functions as a cofactor in the APC-mediated degradation of FVIIIa. The FV (Leiden) mutation affects the anticoagulant response to APC at two distinct levels of the coagulation pathway, as it impairs degradation of both activated factor V and activated factor VIII, the latter effect inasmuch as FVLeiden is a poor APC cofactor. Several other genetic traits, some of them quite common, are known to affect the anticoagulant response to APC, but none of them cause the same severe APC-resistance phenotype as FV (Leiden) and their importance as risk factors for thrombosis is unclear. A poor APC response may also result from acquired conditions, some of which are clearly involved in the pathogenesis of venous thrombosis. Venous thrombosis is a typical multifactorial disease, the pathogenesis of which involves multiple gene-gene and gene-environment interactions. In many patients with severe thrombophilia, APC resistance is found as a contributing risk factor.  相似文献   

19.
Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3). FVa2 appears to interact mostly with exosite I, while both exosites are involved in interactions with the C-terminal linker. The 1.7-? crystal structure of irreversibly inhibited thrombin bound to FVa2 unambiguously reveals docking of FV residues Glu(666)-Glu(672) to exosite I. These findings were confirmed in a second, medium-resolution structure of FVa2 bound to the benzamidine-inhibited proteinase. Our results suggest that the acidic A2-B domain linker is involved in major interactions with thrombin during cofactor activation, with its more N-terminal hirudin-like sequence playing a critical role. Modeling experiments indicate that FVa2, and likely also FVa3, wrap around thrombin in productive thrombin·FV complexes that cover a large surface of the activator to engage the active site.  相似文献   

20.
Lu  D; Kalafatis  M; Mann  KG; Long  GL 《Blood》1994,84(3):687-690
Clinical manifestations of arterial and venous thrombosis in a family with protein C deficiency was associated with two mutations in the light chain of protein C: Glu20-->Ala and Val34-->Met. Further studies showed that the mutation Glu20-->Ala which eliminated a gamma- carboxylation site was exclusively responsible for the anticoagulant defect of activated protein C (APC). Membrane-bound human factor Va is inactivated by APC after two sequential cleavages of the heavy chain at Arg506 and Arg306. Human factor Va inactivation by human recombinant APC (rAPC) and a mutant molecule with an alanine instead of a glutamic acid at position 20 (rAPC(gamma 20A)) was investigated in the presence and absence of phospholipid vesicles. During a 2-hour incubation period of the cofactor with either rAPC or rAPC(gamma 20A). In the absence of a membrane surface, factor Va is cleaved quantitatively at Arg506 and retains approximately 60% of its initial cofactor activity. After a 2- hour incubation period with rAPC membrane-bound factor Va has no cofactor activity, whereas in the presence of a membrane surface and rAPC(gamma 20A) factor Va retains 60% of its initial cofactor activity. The completed loss in factor Va cofactor activity upon incubation of the membrane-bound cofactor with phospholipid vesicles and rAPC is associated with cleavages at Arg506 and Arg306, whereas membrane-bound factor Va cleavage at Arg306 by rAPC(gamma 20A) is impaired, resulting in a cofactor that is cleaved at Arg506. Slow cleavage at Arg306 occurs when membrane-bound factor Va is incubated with rAPC(gamma 20A) and only small amounts of fragments of M(r) = 45,000 and 30,000 are noticed. Our data show that the genetic defect which leads to the absence of a gamma-carboxylation site at Glu20 impairs membrane binding of human APC, which in turn is required for cleavage of factor Va at Arg306 and inactivation of the cofactor. The consequence of impaired membrane-dependent cleavage at Arg306 is manifested in vivo by venous and arterial thrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号