首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Micropowder injection molding (μPIM) is a potential low-cost process for the mass production of metal or ceramic microstructures. In order to obtain good molded microstructures and to avoid molding defects, it is important to select suitable injection molding parameters. In this paper, the selection of injection molding conditions for the production of 316L stainless steel microstructures by μPIM is presented. Silicon mold inserts with 24 × 24 microcavities were injection molded on a conventional injection molding machine. The dimensions of each microcavity were Φ 100 μ m × depth 200 μm, giving an aspect ratio of 2. The distance between each microcavity was 200 μm. Five sets of experiments were conducted by varying one injection molding parameter at a time. The parameters included injection pressure, holding pressure, holding time, mold temperature, and melt temperature. Higher injection pressure and holding pressure were required during the injection molding process due to the small dimensions of the microcavities and the large number of microcavities (576 microcavities). High mold temperature was required for complete filling of the microcavities. Molded microstructures without visual defects were obtained using appropriate injection molding parameters. Catalytic debinding and sintering of the 316L stainless steel microstructures were successfully conducted.  相似文献   

2.
Conventional fusion welding of stainless steel foils (<100 μm thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 μm thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of δ-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding.  相似文献   

3.
Metal injection molding (MIM) is a near net-shape process that offers the unique ability to manufacture porous components with homogeneous porosity, pore structure and permeability. MIM is a process that can significantly reduce production cost when large quantities of components with complex shape need to be delivered. In this study, MIM is used to produce porous 316L stainless steel structure from both water and gas atomized powders. The porous components made by MIM were characterized to evaluate their suitability for small pore structure applications. The porous structures were analyzed for porosity, pore size, permeability, and thermal conductivity as a function of powder type and processing conditions. A typical MIM powder (<20 μm) processed at 50 vol% loading in a binder system produced a uniform pore structure with a permeability of less than 1⋅10− 13 m2 and a maximum pore radius of less than 5 μm. Water-atomized powder proved to be better suited for low-solids-loading metal injection molding (<50 vol% loading) since its irregular shape provided greater strength and fewer defects during the molding and debinding process steps. Measurements of thermal conductivity show that the water-atomized powder had less thermal conductivity (∼2 W/m-K) than the gas-atomized powder (∼3 W/m-K). This study shows that MIM is a suitable process that can be used to manufacture functional porous structures that require isotropic pore size and complex shape.  相似文献   

4.
建立了一种变模温和型腔气体反压协同控制的微孔发泡注塑技术,研制了相应的变模温控制系统与型腔气体反压控制系统,构建了变模温与型腔气体反压辅助微孔发泡注塑试验线,并对变模温与型腔气体反压作用下的产品内外泡孔结构演变进行了研究。结果表明,变模温与型腔气体反压辅助工艺单独施加于微孔发泡注塑技术时,对其产品内外泡孔结构均具有双重影响:变模温可以改善产品大部分的表面形貌,但其对填充过程中的熔体发泡影响不大;型腔气体反压可以基本抑制填充过程中的熔体发泡,但却对产品内部泡孔密度有比较明显的降低影响。通过变模温与型腔气体反压的协同控制,可以实现微孔发泡注塑产品表面气泡形貌和内部泡孔结构的良好调控。  相似文献   

5.
Micro metal injection molding (μMIM) is a promising process for the replication of metallic microstructures. In the micrometer regime, surface roughness is important in view of the dimensional tolerance and the applications of microstructured parts. In this paper, the effects of debinding on the surface roughness of 316 L stainless steel microstructured parts were investigated. Experimental results showed that using higher heating rates during debinding increased the weight loss of debound parts. The debound parts of higher weight loss gave better surface finish after sintering. Comparing the increase of sintering time and temperature, the surface finish improvement was more significant for increasing temperature.  相似文献   

6.
粉末微注射成形ZrO_2微结构表面质量控制   总被引:1,自引:1,他引:0  
采用粉末微注射成形技术制得了二氧化锆陶瓷微结构件,注射成形最小微结构尺寸为Φ300μm×250μm.分析了微注射成形工艺参数、模具抽真空及硅模具对微结构表面质量的影响.实验结果表明在模具温度和注射压力较低时,相同工艺参数下随着微型腔尺寸的减小微结构顶端的表面平整度逐渐下降,提高模具温度和注射压力以及注射前对模具进行抽真空可以改善微结构表面平整度.另外,注射前的模具抽真空有助于减少微结构的表面气孔.亚微米陶瓷超细粉的使用明显改善了烧结后微结构的表面质量,其表面粗糙度值由烧结前的0.33μm降低为约0.28μm.  相似文献   

7.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

8.
310S stainless steel coatings were produced using unbalanced magnetron sputter deposition technique. Different deposition parameters (Ar working pressure and bias voltage) were used during coating operations. It was found that the 310S coatings have a ferritic (bcc) phase structure; and the lattice parameter varies with the bias voltage and Ar pressure. Ar pressure has an important effect on the coating hardness. As Ar pressure increases from 2.67 to 8.0 × 10−3 mbar (1 mbar = 0.75 Torr), there is an abrupt drop in coating surface hardness. This was explained with the formation of different coating microstructures according to the Thornton's model. With increasing Ar pressure, surface roughness increases, indicating that the coating surface becomes more complex.  相似文献   

9.
The influence of rare earth addition in weld metal, on the microstructure and oxidation behaviour of AISI 316L stainless steel in dry air under isothermal condition at 973 K for 240 h is reported. Rare earth metal (REM) doped weld metal zone exhibits better oxidation resistance during isothermal holding as compared to base metal and undoped weld metal zone of 316L. Presence of both Ce and Nb in weld metal shows superior oxidation resistance than with Ce alone. TIG weld microstructures are presented by optical microscopy. The morphologies of the scales and nature of their adherence to the alloy substrates, and scale spallation have been characterized by SEM and EDAX.  相似文献   

10.
A study performed with a dedicated scanning electron microscope (SEM) on the surface electrical properties of (1 0 0)-oriented yttria-stabilized zirconia (YSZ) single crystals irradiated with 1 MeV electrons is presented. When compared with virgin YSZ, the 1 MeV-irradiated YSZ shows a decrease of the intrinsic total electron emission coefficient σ0 and an increase of the time constant τ associated with the charging kinetics of the material at room temperature. These measurements performed with the SEM beam at 10 keV indicate that the defects induced by the 1 MeV-electron irradiation generate a positive electric field of the order of 0.5 × 106 V/m at a depth of about 1 μm that prevents electrons to escape. When the SEM beam with a 1.1 keV energy is used, a smaller field (0.5 × 103 V/m) is detected closer to the surface (20 nm). The fading of these fields during the thermal annealing in the 400–1000 K temperature range provides information on the nature of defects induced by the 1 MeV-electron irradiation.  相似文献   

11.
Binder ink system is the backbone of binder jet 3D printing (BJ-3DP) technology. Compared with metal injection molding (MIM), BJ-3DP needs much less amount of binder, which means less exhaust gas generation during the debinding process and more environmental friendliness. More than that, low content of binder is also supposed to benefit the structure properties of the printed metal parts. Herein, an ultralow-binder-content ethanol–water–PVP ink system is demonstrated for the BJ-3DP 316 L stainless steel parts by applying thermal bubble inkjet technology. The PVP binder concentration is as low as 80 mg mL−1, which can achieve an ultralow solid content of 0.2 wt% in the printed green part. The two-component solution with water and ethanol provides not only the rheology property adjustment freedom for the ink jetting and infiltration in the metal powders, but also the two boiling points for the step-by-step capillary bridge formation process. By applying the low-binder-content ink, the fully densified 316 L stainless steel parts after sintering can obtain the relative density up to 99.4%, Vickers hardness up to 185 HV, tensile strength up to 542 MPa, 25% elongation at break, and feature size as small as 200 μm.  相似文献   

12.
用扫描电镜(SEM)观察了气体辅助注射成型(GAIM)和常规注射成型(CIM)等规聚丙烯(iPP)在不同部位的结晶形态。发现CIM试样的"皮-芯"结构不明显,而GAIM试样在不同部位则形成了包括球晶、串晶和取向片晶,进而表现出明显的多层次结构。在结晶形态分析的基础上,初步探讨了GAIM制品多层次结构的形成机理。  相似文献   

13.
In order to elucidate the impact of σ phase on the oxidation film formation and stress corrosion cracking (SCC) resistance of 316L stainless steel, corrosion, SCC and three-point bending tests were conducted and the microstructures of the σ phase in 316L safe-end pipes were characterized via optical microscopy, environmental scanning electron microscopy and scanning Kelvin probe force microscopy. The results indicated that the σ phase was detrimental to the SCC resistance of 316L in high temperature and high pressure environments and the existence of inherently hard and brittle σ phase could change the cracking mode.  相似文献   

14.
Metal Injection Molding (MIM) was performed with water atomized and gas atomized 316L stainless steel powders and powder blends thereof. Feedstocks were prepared using a thermoplastic binder system and subsequently molded into tensile test specimens. Different debinding procedures and sintering treatments were applied and their influence on carbon content in the product was compared. Chemical decomposition processes of the binder and the influence of powder morphology on debinding and sintering behaviour are discussed. Shrinkage of the MIM-fabricated parts was examined and correlated to the powder characteristics. As a result a procedure is suggested to achieve mechanical properties expected for 316L stainless steel.  相似文献   

15.
316L不锈钢粉末注射成形件的烧结致密化行为   总被引:1,自引:0,他引:1  
为了控制粉末注射成形零件的最终尺寸精度和力学性能,对316L不锈钢粉末注射成形件的烧结致密化行为进行了试验研究,分析了烧结温度和升温速率对试件致密化行为以及烧结件力学性能的影响.试验结果表明,致密化过程始于1080℃左右,主要在1200~1300℃的升温过程中快速进行,致密化速率随着升温速率的升高而升高.烧结件的抗拉强度、抗弯强度以及延伸率,不但取决于致密化程度,而且与微观结构有关.分析表明,将基于扩散控制和强度控制的烧结理论结合,可以有效地解释316L不锈钢粉末的致密化行为,需在现有的烧结模型中考虑强度影响因素,才能更真实地模拟烧结过程.  相似文献   

16.
A method is described for the fabrication of dense thin sheets of γ titanium aluminide (γ-TiAl) by a powder metallurgy route involving hot isostatic pressing (HIP) of tape-cast monotapes. Gamma-TiAl powder (particle size <90 μm) was incorporated into a concentrated slurry by mixing with an organic binder in a solvent and the system was tape-cast to form sheets with a thickness of 400–600 μm. After insertion of the tape-cast sheet into a HIP can and binder removal in situ by thermal decomposition, HIP at 1100 °C under a pressure of 130 MPa produced dense sheets with a thickness of 250–400 μm. The free, dense sheets with a fine-grain microstructure were obtained by dissolution and oxidation of the HIP can. The carbon content of the fabricated sheets was 0.035 wt.%. Facile adaptation of the process to the production of γ-TiAl thin sheets with complex shapes is expected.  相似文献   

17.
Bi2Ti2O7 thin films have been grown directly on n-type GaAs (1 0 0) by the chemical solution decomposition technique. X-ray diffraction analysis shows that the Bi2Ti2O7 thin films are polycrystalline. The optical properties of the thin films are investigated using infrared spectroscopic ellipsometry (3.0–12.5 μm). By fitting the measured ellipsometric parameter (Ψ and Δ) data with a three-phase model (air/Bi2Ti2O7/GaAs), and Lorentz–Drude dispersion relation, the optical constants and thickness of the thin films have been obtained simultaneously. The refractive index and extinction coefficient increase with increasing wavelength. The fitted plasma frequency ωp is 1.64×1014 Hz, and the electron collision frequency γ is 1.05×1014 Hz, and it states that the electron average scattering time is 0.95×10−14 s. The absorption coefficient variation with respect to increasing wavelength has been obtained.  相似文献   

18.
This paper presents the results of SSC (Sulfide Stress Cracking) investigations of duplex stainless steel 2205 resistance to cracking failure under the combined action of tensile stress and aqueous environments containing hydrogen sulfide according to the NACE Standard TM0177-96. The investigations were carried out on 9 test pieces that were loaded with a tensile stress ranging from 1.02 × the yield stress (YS) to 0.72 × YS. The tests were terminated either when the test specimen failed or after 720 h (30 days) – whichever occurred first – in accordance with the standard requirements. Only two of the specimens examined, one loaded with 1.02 × YS and the second one with 0.72 × YS, failed during the test. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of such parameters as linear roughness index RL, fractal dimension DF and overlap index OL.  相似文献   

19.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

20.
The effects of inducing artificial crack closure into fatigue cracks in AISI 304 stainless steel by infiltrating foreign materials have been investigated. The foreign materials used include pure epoxy resin and resin mixed with 0.3  μm and 4  μm TiO2 , 4  μm Fe, as well as 18  μm AISI 316L stainless steel. In all the cases studied, different degrees of crack growth retardation have been achieved. When the particle size was small enough or when the prop-opening load for infiltration was large enough, crack arrest occurred. Crack retardation and arrest were mainly caused by the infiltrated material rather than the propping load. A rigid-wedge model was found to have limited value in predicting the possible outcome of an infiltration. On the other hand, the degree of crack closure immediately on resumption of a test after infiltration could tell whether the treatment was going to be successful or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号