首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The template effect plays important roles not only in modern synthetic and enzymatic catalysis but also in the ancient “RNA‐polypeptide (RNP) world,” which has been postulated to be a crucial stage in the origin of life. To mimic primitive template catalysis of peptide ligations by RNAs, we previously reported the design and synthesis of a ternary RNP complex in which the ligation of two peptides was significantly facilitated by a template RNA with two peptide‐binding units. However, RNA molecules also promoted the ligation reaction in a nonspecific manner through electrostatic interactions between RNA and basic peptides. In this study, we suppressed this effect by reducing the length of the original template derived from the Tetrahymena intron RNA. This modification, however, decreased the template ability for the specific reaction. As an alternative RNA that was as effective as the original template, we found that a self‐dimerizing RNA was a promising template for peptide ligation without a nonspecific effect.  相似文献   

2.
Isotope‐edited two‐dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site‐specific incorporation of stable 13C=18O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis—via a key ester insulin intermediate—of 97 % enriched [(1‐13C=18O)PheB24] human insulin: stable‐isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X‐ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1‐13C=18O)PheB24] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red‐shifted amide I carbonyl band peak at 1595 cm?1 resulting from the (1‐13C=18O)PheB24 backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function.  相似文献   

3.
Bv8, a 77‐residue protein isolated from frogs, is the prototypic member of the prokineticin family of cytokines. Prokineticins (PKs) have only recently been identified in vertebrates (including humans), and they are believed to be involved in a number of key physiological processes, such as angiogenesis, neurogenesis, nociception, and tissue development. We used a combination of Boc solid‐phase peptide synthesis, native chemical ligation, and in vitro protein folding to establish robust chemical access to this molecule. Synthetic Bv8 was obtained in good yield and exhibited full activity in a human neuroblastoma cell line and rat dorsal root ganglion (DRG) neurons. The 3D structure of the synthetic protein was determined by using NMR spectroscopy and it was found to be homologous with that of mamba intestinal toxin 1, which is the only other known prokineticin structure. Analysis of a truncated mutant lacking five residues at the N terminus that are critical for receptor binding and activation showed no perturbation to the core protein structure. Together with the functional data, this suggests that receptor binding is likely to be a highly cooperative process possibly involving major allosterically driven structural rearrangements. The facile and efficient synthesis presented here will enable preparation of unique chemical analogues of prokineticins, which should be powerful tools for modulating the structure and function of prokineticins and their receptors, and studying the many physiological processes that have been linked to them.  相似文献   

4.
The 2014 report from the World Health Organization (WHO) on antimicrobial resistance revealed an alarming rise in antibiotic resistance all around the world. Unlike classical antibiotics, with the exception of a few species, no acquired resistance towards antimicrobial peptides (AMPs) has been reported. Therefore, AMPs represent leads for the development of novel antibiotics. Caenopore‐5 is constitutively expressed in the intestine of the nematode Caenorhabditis elegans and is a pore‐forming AMP. The protein (82 amino acids) was successfully synthesised by using Boc solid‐phase peptide synthesis and native chemical ligation. No γ‐linked by‐product was observed despite the use of a C‐terminal Glu‐thioester. The folding of the synthetic protein was confirmed by 1H NMR spectroscopy and circular dichroism and compared with data recorded for recombinant caenopore‐5. The permeabilisation activities of the protein and of shortened analogues were evaluated.  相似文献   

5.
Sialic acid (Sia) is considered as one of the most important biomolecules of life since its derivatives and terminal orientations on cell membranes and macromolecules play a major role in many biological and pathological processes. To date, there is only a limited number of active molecules that can selectively bind to Sia and this limitation has made the study of this glycan challenging. The lectin superfamily is a well-known family of glycan binding proteins, which encompasses many strong glycan binding peptides with diverse glycan affinities. Mistletoe lectin (ML) is considered one of the most active members of lectin family which was initially classified in early studies as a galactose binding lectin; more recent studies have suggested that the peptide can also actively bind to Sia. However, the details with respect to Sia binding of ML and the domain responsible for this binding are left unanswered because no comprehensive studies have been instigated. In this study, we sought to identify the binding domain responsible for the sialic acid affinity of mistletoe lectin isoform I (MLI) in comparison to the binding activity of elderberry lectin isoform I (SNA), which has long been identified as a potent Sia binding lectin. In order to execute this, we performed computational carbohydrate-protein docking for MLB and SNA with Neu5Ac and β-Galactose. We further analyzed the coding sequence of both lectins and identified their glycan binding domains, which were later cloned upstream and downstream to green fluorescent protein (GFP) and expressed in Escherichia coli (E. coli). Finally, the glycan affinity of the expressed fusion proteins was assessed by using different biochemical and cell-based assays and the Sia binding domains were identified.  相似文献   

6.
Protein glycosylation is a major post-translational modification. To elucidate the effect of this modification on protein function, homogeneous glycoproteins are required. Because glycoproteins isolated from biological sources contain glycoforms, a mixture of a single protein chain with several different oligosaccharides appended, homogeneous glycoproteins obtained through chemical synthesis offer a better solution. In this review, several methods used by our group for the chemical synthesis of homogeneous glycoproteins are addressed. First, preparation of sufficient amounts of oligosaccharides with the desired structures was achieved using a combination of chemical protection and enzymatic digestion. Then glycopeptide-αthioesters were prepared by incorporation of oligosaccharides onto the side chains of cysteine residues in peptide-αthioesters. Finally, biologically active homogeneous glycoproteins were prepared through native chemical ligation of glycopeptide-αthioesters and subsequent oxidative folding.  相似文献   

7.
A synthetic protocol for the preparation of 162‐residue S‐monoglycosylated GM2‐activator protein (GM2AP) analogues bearing various amino acid substitutions for Thr69 has been developed. The facile incorporation of the replacements into the protein was achieved by means of a one‐pot/N‐to‐C‐directed sequential ligation strategy using readily accessible middle N‐sulfanylethylanilide (SEAlide) peptides each consisting of seven amino acid residues. A kinetically controlled ligation protocol was successfully applied to the assembly of three peptide segments covering the GM2AP. The native chemical ligation (NCL) reactivities of the SEAlide peptides can be tuned by the presence or absence of phosphate salts. Furthermore, NCL of the alkyl thioester fragment [GM2AP (1–31)] with the N‐terminal cysteinyl prolyl thioester [GM2AP (32–67)] proceeded smoothly to yield the 67‐residue prolyl thioester, with the prolyl thioester moiety remaining intact. This newly developed strategy enabled the facile synthesis of GM2AP analogues. Thus, we refer to this synthetic protocol as “tailored synthesis” for the construction of a GM2AP library.  相似文献   

8.
The development of efficient chemical methods for total synthesis or semisynthesis of integral membrane proteins is an important challenge at the interface between chemistry and biology. This review outlines the recent advances in the synthesis of integral membrane proteins, with particular focus on the methods for difficult peptide synthesis, purification, and enhancement of peptide solubility under the ligation conditions. The applications of these methods to the synthesis of integral membrane proteins with one or multiple transmembrane domains are also described.  相似文献   

9.
We present the development of a native chemical ligation handle that also functions as a masked electrophile that can be liberated during synthesis when required. This handle can thus be used for the synthesis of complex activity‐based probes. We describe the use of this handle in the generation of linkage‐specific activity‐based deubiquitylating enzyme probes that contain substrate context and closely mimic the native ubiquitin isopeptide linkage. We have generated activity‐based probes based on all seven isopeptide‐linked diubiquitin topoisomers and demonstrated their structural integrity and ability to label DUBs in a linkage‐specific manner.  相似文献   

10.
Synthetic riboswitches can serve as sophisticated genetic control devices in synthetic biology, regulating gene expression through direct RNA–ligand interactions. We analyzed a synthetic neomycin riboswitch, which folds into a stem loop structure with an internal loop important for ligand binding and regulation. It is closed by a terminal hexaloop containing a U‐turn and a looped‐out adenine. We investigated the relationship between sequence, structure, and biological activity in the terminal loop by saturating mutagenesis, ITC, and NMR. Mutants corresponding to the canonical U‐turn fold retained biological activity. An improvement of stacking interactions in the U‐turn led to an RNA element with slightly enhanced regulatory activity. For the first position of the U‐turn motif and the looped out base, sequence–activity relationships that could not initially be explained on the basis of the structure of the aptamer–ligand complex were observed. However, NMR studies of these mutants revealed subtle relationships between structure and dynamics of the aptamer in its free or bound state and biological activity.  相似文献   

11.
12.
13.
Proteins are interesting but challenging targets for synthetic chemistry. Chemical synthesis of proteins that cannot be obtained recombinantly provides compounds that are needed for both basic research and development of functional molecules. In the essay, some recent examples are surveyed for the use of chemically synthesized proteins in studies on biochemistry and biophysics of protein post‐translational modification. Moreover, use of synthetic proteins for the development of peptide/mini‐protein‐based diagnostics and therapeutics is also discussed.  相似文献   

14.
From mistletoe extracts, a chitin‐binding lectin (cbML) was isolated and its primary structure determined. The protein is composed of two identical protein chains, linked by am interchenary disulfide bond. Each chain is characterized by four intrachenary disulfide bridges. The structure shows high homology to hevein, one of the prominent allergens of natural rubber latex. cbML could also be detected in commercially available pharmaceutical mistletoe extract preparations. The described isolation procedure and characterization allows isolation of cbML in highly pure form and sufficient quantities, now ready for unequivocal determination for its pharmacological effects.  相似文献   

15.
We report a novel strategy for native chemical ligation (NCL). Alanines not located at a ligation site are temporarily replaced with cysteines, and this enables efficient thiol‐additive‐free NCL, with subsequent desulfurization to regenerate the target peptide. We synthesized stresscopin‐related peptide and neuroendocrine regulatory peptide‐2 (NERP‐2) by this method. We confirmed that both conventional alkyl thioester and thioester‐equivalent N‐acyl‐N′‐methyl‐benzimidazolinone (MeNbz) can be adopted as thioester components for thiol‐additive‐free NCL of multi‐Cys‐containing peptides.  相似文献   

16.
Light up galectin: Photoprobes based on thiodigalactoside were prepared for galectin‐3, a lectin linked to cancer. The probes contained either benzophenone or acetophenone moieties as the photolabel for covalent attachment to the protein. One particular probe labeled galectin‐3 selectively, even in the presence of cell lysate.

  相似文献   


17.
Current solution NMR techniques enable structural investigations of proteins in molecular particles with sizes up to several hundred kDa. However, the large molecular weight of proteins in such systems results in increased numbers of NMR signals, and the resulting spectral overlap typically imposes limitations. For multidomain proteins, segmental isotope labeling of individual domains facilitates the spectral interpretation by reducing the number of signals, but for large domains with small signal dispersion, signal overlap can persist. To overcome limitations arising from spectral overlap, we present a strategy that combines cell‐free expression and ligation of the expressed proteins to produce multidomain proteins with selective amino acid‐type labeling in individual domains. The bottleneck of intrinsically low cell‐free expression yields of precursor molecules was overcome by introducing new fusion constructs that allowed milligram production of ligation‐competent domains labeled in one or multiple amino acid types. Ligation‐competent unlabeled partner domains were produced in vivo, and subsequent domain ligation was achieved by using an on‐column strategy. This approach is illustrated with two multidomain RNA‐binding proteins, that is, the two C‐terminal RNA‐recognition motifs of the human polypyrimidine tract‐binding protein, and two highly homologous helix–turn–helix domains of the human glutamyl‐prolyl‐tRNA synthetase.  相似文献   

18.
Galectin‐1 (Gal‐1), a ubiquitous β‐galactoside‐binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal‐1 depend on its affinity for β‐galactoside‐containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr‐Xxx‐Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal‐1–asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr‐Xxx‐Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr‐Xxx‐Tyr peptides studied do not bind to Gal‐1, whereas their binding to ASF is clearly detected. 15N,1H HSQC titrations with 15N‐labeled Gal‐1 confirm the absence of any peptide–Gal‐1 interaction. These data indicate that the Tyr‐Xxx‐Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.  相似文献   

19.
Carbohydrate–lectin interactions intervene in and mediate most biological processes, including a crucial modulation of immune responses to pathogens. Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. Herein, a novel molecular interaction between the human macrophage galactose-type lectin (MGL) and the lipooligosaccharide (LOS) of Escherichia coli strain R1 is described. Saturation transfer difference NMR spectroscopy analysis, supported by computational studies, demonstrated that MGL bound to the purified deacylated LOSR1 mainly through recognition of its outer core and established crucial interactions with the terminal Galα(1,2)Gal epitope. These results assess the ability of MGL to recognise glycan moieties exposed on Gram-negative bacterial surfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号