首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在CFD-DEM气固耦合仿真中,粘结颗粒模型被广泛用于排种器大颗粒种子模型建立,但该模型受建模方法的限制,与传统球面填充法相比,其表面粗糙度与真实种子的差距更为明显。在应用响应面法对颗粒接触参数进行标定时,会存在因因素零水平值选取不当造成仿真标定参数失真的问题,影响气固耦合仿真精度。针对此问题,本文建立因素标定时零水平值与实测值的线性函数,选取6组不同修正系数求解标定时零水平值,并应用响应面优化法对玉米颗粒粘结模型的种间静摩擦因数和滚动摩擦因数两个关键因素进行标定。将不同修正系数下标定的玉米种子接触参数输入EDEM中进行提升仿真试验,拟合不同修正系数取值时堆积角正切值的线性函数,通过拟合方程求得修正系数取值为0.1977时标定的玉米种间接触参数值最为准确,且标定参数的最佳组合为玉米-玉米静摩擦因数0.031、玉米-玉米滚动摩擦因数0.0039。将最佳参数组合输入EDEM中进行抽板仿真试验和排种过程仿真试验,试验结果分别与真实试验对比,发现标定参数后的仿真试验与真实试验种群分布相近,二者无显著性差异,表明标定后的玉米离散元接触参数是可信的。研究结果可为后续气力式排种器仿真过程标定参数范围选取提供参考。  相似文献   

2.
为保证花生荚果在仿真模拟试验时所用参数的准确性,通过实际物理试验与仿真模拟试验相结合的方法对离散元仿真参数进行标定。首先,通过实际物理试验测得花生荚果基本物理参数(外形尺寸、密度、含水率、容重、泊松比、弹性模量和剪切模量),依据实际物理试验测得的各物理量结果确定仿真模拟试验参数取值范围,开展Plackett-Burman试验,筛选出对堆积角存在显著性影响的因素为:花生荚果—花生荚果静摩擦系数、滚动摩擦系数,花生荚果—钢板静摩擦系数。进一步通过最陡爬坡试验确定显著性因素的取值范围。开展Box-Behnken试验,建立堆积角与显著性因素之间的二次回归方程,并以实际物理试验堆积角(31.63°)为目标值对方程进行求解,得到最佳仿真模拟参数:花生荚果间静摩擦系数、滚动摩擦系数,花生荚果—钢板静摩擦系数分别为0.74、0.24和0.58。最后,对试验分析后确定的最佳仿真参数进行仿真模拟试验,对取得的仿真模拟值与实际试验值进行独立样本T检验得出P>0.05,表明实际试验堆积角与仿真模拟试验堆积角无显著性差异,且相对误差为2.877%,验证了仿真模拟试验的准确性。通过对比其他物料参数标定时所用...  相似文献   

3.
基于离散元的微型马铃薯仿真参数标定   总被引:22,自引:0,他引:22  
为系统全面地研究微型马铃薯种子离散元仿真物性参数,根据其物料特征创建微型薯模型,以此为基础建立微型薯离散元参数获取模型。利用试验测定及仿真模拟相结合的方法对微型薯颗粒离散元参数进行标定和校准,即以先后建立碰撞恢复系数测定模型、微型薯-钢板摩擦因数测定模型、微型薯颗粒间摩擦因数测定模型的方法,在EDEM中建立仿真试验模型并以所标定的相应离散元仿真参数为自变量,以仿真模型所测定的因素为评价指标,通过在仿真模型中改变自变量获取相应的评价指标值,建立曲线拟合方程,将真实试验模型中对各因素所测定的值作为仿真目标值代入拟合方程中得到微型薯离散元仿真参数并进行了仿真试验验证。求得微型薯种子离散元仿真参数:微型薯-钢板碰撞恢复系数为0.523,微型薯颗粒间碰撞恢复系数为0.478,微型薯-钢板静摩擦因数为0.644,微型薯-钢板滚动摩擦因数为0.022 1,微型薯颗粒间静摩擦因数为0.325,微型薯颗粒间滚动摩擦因数为0.030 0。对标定后的微型薯离散元物性参数进行仿真验证试验,结果表明标定后的微型薯仿真颗粒堆积角以及种子分布情况与真实试验条件相吻合,为微型薯相关播种机具设计和优化提供了理论依据。  相似文献   

4.
玉米秸秆粉料致密成型离散元模型参数标定   总被引:5,自引:0,他引:5  
为了提升秸秆粉料致密成型过程中离散元仿真所需参数的准确性,以玉米秸秆粉料为研究对象,利用EDEM软件中的Hertz-Mindlin with JKR粘结接触模型进行玉米秸秆粉料致密成型离散元仿真模型参数标定研究.首先,以接触参数的物理试验结果作为仿真参数选择依据,应用Plackett-Burman试验对初始参数进行筛选...  相似文献   

5.
为获取玉米田耕层不同土壤的各项参数,本文将玉米田耕层典型土壤分为未与玉米根茬接触的普通土壤(PT)和与玉米根茬结合形成根土复合体的土壤(GT),采用物理试验与离散元仿真相结合的方法,分别对离散元参数进行标定。基于Hertz-Mindlin(no slip)接触模型,采用中心组合试验设计方法,以土壤堆积角为目标值,进行了四因素五水平仿真试验。基于Hertz-Mindlin with bonding接触模型,采用Design-Expert软件,应用Plackett-Burman设计敏感性分析试验、最陡爬坡试验、Box-Behnken试验,以土壤硬度为目标值,对显著性参数进行寻优,得到PT最优解组合为:粘结键法向刚度4.37×107 N/m3、粘结键切向刚度1.46×107 N/m3、切向极限应力3.24×105 Pa; GT最优解组合为:粘结键法向刚度5.19×107 N/m3、粘结键切向刚度4.25×107 N/m...  相似文献   

6.
采用离散元法对蚕豆与收获机具间的相互作用进行数值仿真研究,实现对蚕豆收获机具关键部件相关参数的设计与优化,以提高研究效率、减少研究成本。为此,通过物理试验对蚕豆基本物性参数、接触力学参数和休止角进行测定,参考物理试验测定结果选取仿真试验参数取值范围。以仿真试验休止角为响应值,由Plackette-Burman(PB)试验得到显著影响休止角的试验参数(蚕豆-蚕豆静摩擦因数、蚕豆-钢板静摩擦因数、蚕豆-钢板滚动摩擦因数),并利用最陡爬坡试验在PB试验基础上得到显著参数的取值范围。采用Box-Behnken(BB)试验在休止角与显著参数之间建立二阶回归模型,以休止角物理试验测定值为目标值,对显著参数进行寻优,获得最优参数组合,即蚕豆-蚕豆静摩擦因数0.25、蚕豆-钢板静摩擦因数0.47、蚕豆-钢板滚动摩擦因数0.35。最后,通过T检验得到P>0.05,表明采用最优参数组合得到的休止角仿真值与实测值相差无几,验证了最优参数组合的可靠性。  相似文献   

7.
针对针形茶叶在理条机加工过程中离散元仿真缺少准确的模型参数,导致茶叶理条机离散元仿真过程中易出现失真问题,以单芽茶叶颗粒为研究对象,基于切片技术的近似法建立颗粒模型,采用离散元仿真与漏斗注入法堆积试验相结合的方法,对其仿真参数进行标定。以茶叶颗粒的休止角为响应值,设计Plackett-Burman试验得到对茶叶颗粒休止角有显著性影响的参数:茶叶颗粒间碰撞恢复系数、茶叶颗粒间静摩擦系数和茶叶颗粒间滚动摩擦系数;以仿真试验休止角和实际堆积试验休止角之间的相对误差为目标,进行最陡爬坡试验确定显著性参数的最优值范围,并通过Box-Behnken试验建立茶叶颗粒休止角与显著性参数之间的二次多项式方程,利用Design-Expert软件优化模块得出显著性参数最优值:茶叶颗粒间碰撞恢复系数0.28、茶叶颗粒间静摩擦系数0.15、茶叶颗粒间滚动摩擦系数0.10;并对标定的结果进行离散元仿真验证,结果表明:仿真得到的茶叶颗粒休止角均值为19.52°,与实际茶叶颗粒休止角20.23°相比,相对误差为3.51%,说明此参数标定结果合理有效。为茶叶理条机的优化设计及茶叶加工数值模拟过程提供一定的理论参考。  相似文献   

8.
绿豆种子离散元仿真参数标定与排种试验   总被引:2,自引:0,他引:2  
为提高绿豆精密排种过程离散元仿真模拟试验所用仿真参数的准确度,进一步优化排种部件,基于绿豆种子的本征参数,采用Hertz Mindlin with bonding粘结模型建立种子仿真模型,分别采用自由落体碰撞法、斜面滑动法、斜面滚动法对绿豆种子与接触材料(有机玻璃、Somos8000树脂)间仿真参数进行标定,结果表明:绿豆与有机玻璃碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.445、0.458、0.036,与Somos8000树脂碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.434、0.556、0.049。以种间接触参数为因素,以实测堆积角与仿真堆积角相对误差为指标,进行了最陡爬坡试验、三因素五水平旋转组合设计试验,以最小相对误差为优化目标,对试验数据寻优分析得到:绿豆种间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.3、0.23、0.03。对标定结果进行排种验证试验,结果表明:仿真试验漏吸率与台架试验漏播率最大相对误差为4.71%、重吸率与重播率最大相对误差为4.94%、单粒率与合格率最大相对误差为0.98%,证明标定结果可靠。该研究结果可为绿豆精密排种装置的设计与仿真优化提...  相似文献   

9.
为了探究气力输送中颗粒饲料的破损机理,针对当前缺乏颗粒饲料准确破损仿真模型的问题,利用EDEM仿真软件进行颗粒饲料破损离散元仿真参数标定研究。以粒径为2.50 mm混养成鱼颗粒饲料为研究对象,通过基础试验测定了颗粒饲料本征参数;通过颗粒饲料休止角试验、碰撞恢复系数标定试验和落料时间,结合试验优化设计方法,确定了饲料间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.58、0.23、0.12,饲料和软塑料(软PVC)间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.69、0.22、0.18;通过颗粒饲料单轴压缩破碎试验和仿真试验,结合响应面优化确定了单位面积法向刚度、单位面积切向刚度、临界法向应力、临界切向应力,分别为2.25×109 N/m3、8.05×108 N/m3、455 MPa、305 MPa。以确定的参数进行休止角仿真试验、单轴压缩仿真试验,结果表明,休止角、破碎力、落料时间的仿真值与实测值相对误差分别为0.35%、1.43%、2.81%;通过自由落料、斜面滑动、斜面滚动试验对粘结模型接触参数进...  相似文献   

10.
基于离散元的土壤模型参数标定方法   总被引:25,自引:0,他引:25  
离散元法(EDEM)建立土壤模型过程中部分土壤颗粒参数直接测量难度较大,若基于间接测量的土壤参数值建立离散元土壤模型进行仿真,导致仿真结果误差较大。本文结合代理模型基本理论,提出一种离散元土壤模型的参数标定及优化方法,步骤如下:根据基本试验测定的参数建立离散元土壤模型;结合堆积角及剪切试验,利用模型仿真进行模型参数敏感性分析;以敏感性参数为变量,以真实试验测量值为目标值构造代理模型;通过高斯-牛顿迭代法进行参数优化。由敏感性分析结果知,代理模型自变量为土壤颗粒半径、颗粒间静摩擦因数及滚动摩擦因数,目标量为土壤堆积角、黏聚力、内摩擦角。以涿州保护性耕作试验站土壤(砂壤土)为原型,经优化建立的土壤模型变量参数值分别为:颗粒半径5.7 mm,颗粒间静摩擦因数0.45,滚动摩擦因数0.21。将建立的离散元土壤模型进行轮胎-土壤相互作用仿真模拟,分析轮胎-土壤接触面最大应力、平均应力,并通过田间试验进行验证,将接触面最大应力值、平均应力的仿真值与实际测量值进行比较,结果表明:虚拟仿真与实测值之间数值差异在5.1%以内,标定优化后的土壤模型能够近似代替真实土壤进行仿真。  相似文献   

11.
穴盘育苗中劣质钵苗会影响后期种苗移栽成活率,现有机械式剔除存在颗粒散落遗漏现象,而气吸式剔除方式则可以很好地弥补这一缺陷。为解析钵苗基质气吸式剔除的机理,本文开展离散元仿真的参数标定试验。选取100 g基质进行粒径分布检测,采用漏斗静置,基于图像处理获取基质两侧实际堆积角,通过Plackett-Burman实验确定影响基质堆积角的4个因素;通过最陡爬坡实验确定显著因素最大响应区域;依据Box-Behnken实验建立二阶回归模型并求解最佳参数组合。结果表明,在不显著因素取中间值时,当基质颗粒-颗粒碰撞恢复系数为0.142、基质颗粒-颗粒滚动摩擦因数为0.097、基质颗粒-不锈钢静摩擦因数为0.223和基质JKR表面能为2.325 J/m2时,所得仿真堆积角φ为33.4°,与实际堆积角θ为34.19°的相对误差为2.31%,满足试验需求,所得标定参数可用于钵苗基质的离散元仿真。  相似文献   

12.
由于棉花秸秆在机械化收获和粉碎加工过程中缺乏准确的仿真模型参数,从而造成在机具设计中仿真效果和实际作业存在较大的差异,在一定程度上限制了棉花秸秆收获以及粉碎装置的设计研究。本文以新疆棉花秸秆作为试验材料,开展仿真分析研究,通过物理试验测定棉花秸秆的本征参数后,利用EDEM软件进行试验仿真,对棉花秸秆进行参数标定。采用堆积角试验和弯曲试验方法,测量出棉花秸秆堆积角和最大破坏载荷分别为28.62°和143.21N。应用Hertz-Mindlin no slip模型和Hertz-Mindlin with bonding模型进行棉花秸秆的堆积角仿真试验和弯曲仿真试验,得到棉花秸秆之间碰撞恢复系数、静摩擦因数、滚动摩擦因数和棉花秸秆-钢之间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.5、0.41、0.06、0.5、0.37、0.08,以及棉花秸秆法向接触刚度、切向接触刚度、临界法向应力与临界切向应力分别为4.15×1010N/m、5.60×1010N/m、40MPa、50MPa。将以上结果进行粉碎试验验证,棉花秸秆粉碎后依据长度和宽度不同,分为粉末型物料、破碎型物料、未破碎型物料,仿真试验质量和实际试验质量之间偏差为6.84%、8.29%、7.37%,证明了参数的可行性,可用于棉花秸秆参数标定。  相似文献   

13.
针对目前牧草收获、粉碎加工设备输送和切割等机构研究过程中离散元仿真缺乏准确模型的问题,以含水率高、物理力学特性较为复杂的苜蓿现蕾期茎秆为研究对象,借助EDEM仿真软件,分别基于Hertz-Mindlin(no slip)和Hertz-Mindlin with bonding接触模型对物理参数和粘结参数进行标定。以休止角和剪切试验为基础,通过Plackett-Burman试验、Steepest ascent试验和Box-Behnken试验确定了苜蓿茎秆的泊松比、剪切模量、碰撞恢复系数、静摩擦因数、滚动摩擦因数等物理参数和法向接触刚度、切向接触刚度、临界法向应力、临界切向应力、粘结半径等粘结参数。以确定的物理参数进行休止角仿真试验,结果表明,仿真休止角与物理试验休止角相对误差为0.52%;以确定的粘结参数进行剪切仿真试验,结果表明,仿真剪切破坏力与物理试验仿真破坏力相对误差为0.86%,说明所标定的参数能够真实反映苜蓿现蕾期茎秆的物理和力学特性。  相似文献   

14.
针对基于离散元法的棉籽压缩破碎过程中缺少准确仿真模型的问题,本文以新陆早84号棉籽为研究对象,结合物理试验与仿真试验,对棉籽参数进行标定。基于三维扫描技术,使用Solidworks 2022中的网格建模功能,快速建立棉籽多面体模型。采用堆积角试验对棉籽种间参数进行标定,得到棉籽-棉籽碰撞恢复系数、棉籽-棉籽静摩擦因数、棉籽-棉籽滚动摩擦因数的最优参数组合为0.106、0.248、0.105,仿真堆积角与实际堆积角相对误差为0.28%,证明棉籽种间参数准确。通过单颗粒压缩试验对Tavares模型参数进行标定,以棉籽破碎力与破碎能为指标进行验证,结果表明棉籽破碎力与破碎能相对误差分别为2.37%和2.87%,说明构建的棉籽模型和Tavares模型参数可以表征棉籽压缩破碎过程。  相似文献   

15.
田辛亮  丛旭  齐江涛  郭慧  李茂  范旭辉 《农业机械学报》2021,52(10):100-108,242
由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆-土壤混料为研究对象,构建玉米秸秆-土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用Hertz-Mindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆-土壤混料的实际堆积角,利用Design-Expert软件中Plackett-Burman试验筛选出对堆积角有显著影响的参数为:土壤-土壤滚动摩擦因数、土壤-钢静摩擦因数、秸秆-土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据Box-Behnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆-土壤滚动摩擦因数0.16、土壤-土壤滚动摩擦因数0.24、土壤-钢静摩擦因数0.75、土壤JKR表面能0.67J/m2。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆-土壤混料的离散元仿真提供理论参考。  相似文献   

16.
颗粒肥料离散元仿真摩擦因数标定方法研究   总被引:5,自引:0,他引:5  
对分体圆筒法、倾斜法、抽板法和斜面法4种颗粒特性测试方法进行Plackett-Burman多因素显著性筛选试验,试验方差分析结果表明,不同的测试方法影响测量结果的显著因素与因素显著程度。根据分体圆筒法、倾斜法和斜面法的方差分析结果,提出一种基于颗粒物料整体特性的摩擦因数标定方法,将仿真试验与真实试验相结合,依次标定出尿素颗粒与PVC材料间静摩擦因数为0. 41,颗粒间静摩擦因数为0. 36,颗粒间滚动摩擦因数为0. 15。将所标定的摩擦因数采用无底圆筒法进行验证试验,休止角仿真试验结果为30. 57°,真实试验结果为31. 74°,相对误差为3. 69%,不同含水率下的实际试验休止角与所标定摩擦因数下的仿真休止角相对误差均不大于4. 59%,仿真试验结果与真实试验结果无显著差异,验证了所标定摩擦因数的有效性。本方法可用于其他颗粒状物料间摩擦因数的标定试验。  相似文献   

17.
离散元模拟中沙土参数标定方法研究   总被引:22,自引:0,他引:22  
农业机械与土壤相互作用仿真时,选用颗粒相互作用参数的准确度将直接影响仿真结果。本文提出一种通过试验与模拟相结合系统地标定沙土颗粒相互作用参数的方法。通过堆积角测试装置、三轴剪切试验仪、图像颗粒分析系统等设备测量计算沙土的堆积角、剪切模量、粒径分布和外观形貌等参数,为颗粒或工厂建模提供参考。使用标准球和非标准球对沙土颗粒的碰撞恢复因数、静摩擦因数、滚动摩擦因数进行标定。研究不同质量和不同标定方法(抽板法和漏斗法)是否对堆积角产生影响。模拟结果表明,选用标准球标定时,碰撞恢复因数是0.15,静摩擦因数是0.8,滚动摩擦因数是0.2,抽板法得到的堆积角是33.99°,相对误差是4.74%;漏斗法得到的堆积角是33.59°,相对误差是3.51%。同时,选用非标准球进行标定时,碰撞恢复因数是0.15,静摩擦因数是0.2,滚动摩擦因数是0.3,抽板法得到的堆积角是32.06°,相对误差是1.20%。由此看出,颗粒外观形貌对颗粒间静摩擦因数影响相对较大。  相似文献   

18.
为提高离散元法对指导香蕉秸秆粉碎还田装备设计与优化的准确性与可靠性,本文利用Hertz-Mindlin with bonding接触模型建立香蕉秸秆离散元粘结模型并进行参数标定。运用高速摄影技术开展碰撞恢复试验、静摩擦及滚动摩擦台架试验,确定了香蕉秸秆碰撞恢复系数、静摩擦因数和滚动摩擦因数等基本离散元模型接触参数。开展香蕉秸秆物理与仿真剪切试验,获得破坏香蕉秸秆外皮的力学特征曲线,确定物理最大剪切力为122.41N;通过中心组合设计(Central composite design, CCD)响应面法确定香蕉秸秆粘结模型的法向接触刚度、切向接触刚度、临界法向应力与临界切向应力的最佳参数组合为5.89×107N/m、2.49×106N/m、1.39×105Pa、1.34×105Pa。以参数标定结果进行仿真验证,结果表明,仿真剪切力结果与物理剪切力相对误差仅为2.34%,验证了该粘结参数标定方法的可行性,可为香蕉秸秆粉碎还田机设计与研究提供理论参考。  相似文献   

19.
新疆果园深施散体厩肥离散元参数标定研究   总被引:1,自引:0,他引:1  
为确定新疆果园散体厩肥离散元仿真参数,采用仿真试验与物理试验相结合的方法,对散体厩肥的离散元参数进行标定。以不同参数组合下的堆积角为响应值,采用Plackett-Burman试验对散体厩肥离散元仿真参数进行筛选,得到对堆积角影响显著的参数,即厩肥-厩肥恢复系数、厩肥-钢恢复系数、JKR表面能;通过Box-Behnken试验建立堆积角与显著性参数的二阶回归模型,并对其进行优化,得到显著性参数最优值,即厩肥-厩肥恢复系数为0.49、厩肥-钢恢复系数为0.34、JKR表面能为0.02 J/m2;将最优参数组合下仿真试验得到的堆积角与物理试验值进行对比,二者相对误差为2.73%。研究表明,标定的参数可靠,可为果园散体厩肥深施机械化过程仿真参数优化提供依据。  相似文献   

20.
为解决茎瘤芥种子离散元模拟中缺乏准确仿真参数的问题,通过直接测量和虚拟标定方法确定“涪杂2号”茎瘤芥种子离散元参数。利用数显游标卡尺、电子秤等物理机械特性测定工具,得到茎瘤芥种子的三轴尺寸、等效半径、千粒重和密度;通过斜面碰撞法、三点滑动法和斜面法分别得到茎瘤芥种子与有机玻璃之间的恢复系数、静摩擦系数和滚动摩擦系数分别为0.561、0.420、0.155;采用旋转鼓试验和圆筒提升试验结合MATLAB图像处理技术获得茎瘤芥种子的动态堆积角和静态堆积角分别为35.235 2°和14.483 0°。基于Plackett Burman试验筛选出对动态堆积角和静态堆积角影响显著的参数因子均为种子与种子间的滚动摩擦系数、种子与种子间的静摩擦系数;通过中心复合设计分别获得显著性因子与动态堆积角、静态堆积角的二次回归方程,并以动态堆积角和静态堆积角的实测值为目标,基于回归模型对因子参数组合进行优化,得到两组种子与种子间的静摩擦系数、种子与种子间的滚动摩擦系数最优参数组合为0.666 1、0.023 7以及0.341 6、0.036 0。对两组最优参数组合进行仿真验证,结果显示两组参数组合下动态堆积角、静态堆积角的仿真值与实测值相对误差分别为0.477%、3.590%和1.820%、4.950%。结果表明,仿真中种子与种子间的静摩擦系数、种子与种子间的滚动摩擦系数分别为0.666 1、0.023 7时,更符合茎瘤芥种子实际的物理特性。本研究能为茎瘤芥播种过程及相关装置设计优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号