首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A system based on dielectric barrier discharge (DBD) with improved discharge sta- bility and homogeneity was used for the degradation of Alizarin Red (AR). This special structure of the DBD system is characterized by the high voltage electrode, which is covered with a quartz tube and partially immersed in water, and by directly using the water as the ground electrode. A transition was realized from the filamentary mode for the conventional structure of the DBD to the semi-homogeneous mode for such a configuration of the plasma discharge. The spectra of plasma are dominated by N2 molecular lines in the ultraviolet-A radiation region. Plasma degra- dation of AR in this system exhibited pseudo-first-order reaction kinetics. The degradation rate of AR reached 95% or so after 14 min treatment under favorable conditions. Alkaline conditions are favorable for the degradation of AR. The increase of conductivity of the solution, input power and usage of oxygen bubbling could enhance AR degradation.  相似文献   

2.
This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.  相似文献   

3.
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.  相似文献   

4.
A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.  相似文献   

5.
Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, O 2 , and N 2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O 2 . As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.  相似文献   

6.
Two plasma reactors have been developed and used to degrade dye wastewater agents.The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module.The decomposition of wastewater by ns pulse dielectric barrier discharge(DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors.During experiments,the indigo carmine has been treated as the waste agent.The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand(COD) are carried out to demonstrate the decomposition efect on the wastewater.It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor.The efect of electrical parameters on degradation has been studied in detail.Results from the array reactor indicate that it has a better degradation efect than the unit one.It can not only totally remove the chromogenic bond of the indigo carmine solution,but also efectively degrade unsaturated bonds.The decoloration rate reaches 99% after 10 min treatment,the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment,and the COD degradation rate is nearly 74%.  相似文献   

7.
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the ana  相似文献   

8.
Contact glow discharge electrolysis of some chloroanilines in sodium sulfate was investigated in different initial concentrations.Each of them underwent the dechlorination,deamination theough oxidative degradation,and were eventually decomposed into hydrogen carbonate and carbon dioxide.It was testifies that the chlorine atomn and amidogen could be transformed into chloride ion and nitrite ion ,respectively.Fe^2 has a remarkable catalytic effect on the degradation of them.On the basis of the detailed analysis of the intermediate products and kinetic hehaviors,the reaction pathway was proposed,in which the attack of hydroxyl radical on the benzene ring of starting material might be a key step.  相似文献   

9.
The influence of metal ions, such as Fe2+ , Fe3+ , Cu2+ and Mn2+ , on 4-CP degrada- tion was investigated in an aqueous pulsed discharge plasma system with or without the addition of a TiO 2 photo-catalyst. From an analysis of the pseudo first-order rate constant (k CP ) and energy efficiency (G 50% ) for 4-CP degradation, the experimental results show that the degradation of 4-CP is much enhanced in the presence of ferrous ions at the optimal concentration of 0.2~0.8 mmol/L or 0.2 mmol/L in an aqueous pulsed discharge plasma without or with the TiO2 system, respectively, and the enhancement is ascribed to plasma induced Fenton and photo-Fenton reactions. Meanwhile, the rank of such metal ions for catalytic effect on 4-CP degradation was Fe2+ > Fe3+ > Cu2+ > Mn2+ and Fe2+ > Fe3+ > Mn2+ > Cu2+ for the former and the latter systems, respectively, and the reasons behind this were discussed through the analysis of active species, especially hydrogen peroxide.  相似文献   

10.
The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE). The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca. 80 mA. As the intermediate products, some phenolic compounds were detected as well as carboxylic acids. Experimental results showed that the oxidation process followed the first-order reaction law. Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS), the reaction pathway was proposed. The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.  相似文献   

11.
A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.  相似文献   

12.
Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed in the combined treatment. Results showed that the combined treatment was effective for dye wastewater degradation; when the dosage of STLs was 3.2 g/L, the degradation efficiency reached 90% after 15 rain treatment, and STLs showed a good repeatability. The degradation rate decreased with increasing initial MB concentration but not related to the solution pH in the combined treatment. Fourier-transform infrared spectra and N2 adsorption suggested that the number of acidic and basic groups in the STL surface increased after the treatment, but the surface area and pore volume remained unchanged.  相似文献   

13.
Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine   总被引:2,自引:0,他引:2  
In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (co =30 mg·1-1) is completely converted within 2h at 30℃and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.  相似文献   

14.
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.  相似文献   

15.
Tetracycline(TC)is an antibiotic mainly used in livestock production and respiratory infection.Traditional methods are not effective in removing TC from solution.In this study,TC was degraded by gas-liquid plasma in the presence of rGO-TiO2 in solution.The rGO-TiO2 was prepared by modified hummers and hydrothermal method.The electrical and optical properties of the gas-liquid discharge plasma were studied and the produced long-lived reactive species were analyzed by spectrophotometer.The degradation efficiency of TC was improved by 41.4%after plasma treatment for 12 min in presence of 30 mg l-1 rGO-TiO2 compared to that with plasma alone.The degradation efficiency increased with increasing discharge power,but as the initial concentration was increased from 20 to 80 mg l-1,the degradation efficiency of TC decreased.The initial pH had no significant effect on the degradation of TC.The intermediate products were determined by UV-vis spectrophotometry and ESI(+)-MS,and the degradation mechanism was analyzed.The reactive species,including O3,OH,and H2O2,etc.,produced in the plasma/catalyst system attracted electron-rich functional groups(amino group,aromatic ring,and double bond).Therefore,the gas-liquid plasma/catalyst system could be an effective and promising method for pharmaceutical wastewater treatment in future.  相似文献   

16.
A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 10^10 cm^-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spectroscopy. The enhancement of nucleation is postulated to be a result of the formation of carbonlike phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.  相似文献   

17.
Organic pollutants could be degraded by using bubble discharge in water with gas aeration in the discharge reactor and more plasma can be generated in the discharge process.When pulsed high voltage was applied between electrodes with gas aerated into the reactor,it showed that bubbles were broken,which meant that breakdown took place.It could also be observed that the removal rate of phenol increased with increasing discharge voltage or pulse frequency,and with reducing initial phenol concentration or solution electric conductivity.It could remove more amount of phenol by oxygen aeration.With increasing oxygen flow rate,the removal rate increased.There was little difference with air or nitrogen aeration for phenol removal.The solution temperature after discharge increased to a great extent.However,this part of energy consumption did not contribute to the reaction,which led to a reduction in the energy utilization efficiency.  相似文献   

18.
The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.  相似文献   

19.
《等离子体科学和技术》2015,17(12):1043-1047
A great deal of attention has been focused on discharge plasma as it can rapidly decompose N_2O without additives,which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer.The thermal equilibrium plasma is chosen to combine with catalysts to decompose N_2O,and its characteristics are analyzed in the present paper.The results indicate that NO and NO_2 were formed besides N_2 and O_2 during N_2O decomposition when N_2O was treated merely by discharge plasma.Concentration of NO declined greatly when the discharge plasma was combined with catalysts.Results of Raman spectra analysis on CeO_2,Ce_(0.75)Zr_(0.25)O_2and Ce_(0.5)Zr_(0.5)O_2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N_2O because of the existence of massive oxygen vacancies over the composite oxide catalysts.  相似文献   

20.
The fabrication of a-C:H films from methane has been performed using dielectric-barrier discharges at atmospheric pressure. The effect of combined-feed gas, such as carbon dioxide, carbon monoxide or acetylene on the formation of a-C:H films has been investigated. It has been demonstrated that the addition of carbon monoxide or acetylene into methane leads to a remarkable improvement in the fabrication of a-C:H films. The characterization of carbon film obtained has been conducted using FT-IR, Raman and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号