首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用小球藻生物膜阳极构建光合藻微生物燃料电池(PAMFC),以0.1mol/L的铁氰化钾溶液作为阴极液,外电阻为1000Ω,光照强度为12000lx,温度为25℃,可以得到250m V的稳定输出电压,最大功率密度为80.22m W/m2,内阻为550Ω。微藻挂膜效果、光照强度是影响小球藻MFC产电的主要因素,实验推断藻的呼吸作用和光合作用中产生的电子均可以被传递到阳极产电,并且呼吸电子传递链比光合电子传递链有更高的电子传出效率。  相似文献   

2.
微生物燃料电池处理晚期垃圾渗滤液的特性研究   总被引:1,自引:0,他引:1  
采用双室型微生物燃料电池(MFC)处理晚期垃圾渗滤液,考察了其产电性能及渗滤液处理效果。在外阻为1 000Ω,MFC中垃圾渗滤液的体积分数为20%时,其最大输出电压为660.6 mV,最大输出功率密度为2 182.0mW/m3。当体积分数升至100%,其最大输出电压为709.4 mV,最大输出功率密度为2 513.4 mW/m3,COD去除率约为70.4%。MFC运行期间,渗滤液中的氨氮一部分在阳极室中作为电子供体产电而被去除,另一部分从阳极室转移到阴极室,7 d内NH4+转移率达43%。与此同时,内阻从1 010Ω增加到2 000Ω,阳极液电导率从2.09×10-3S/cm下降到9.15×10-4S/cm。  相似文献   

3.
运行因素对猪场废水微生物燃料电池产电性能的影响   总被引:1,自引:0,他引:1  
以猪场废水为基底构建双室微生物燃料电池,分别研究温度、pH和阳极液搅拌对微生物燃料电池(MFC)产电性能和废水净化效果的影响。结果表明,在一定范围内,温度的提升有助于增强微生物的电化学活性,微碱性条件下MFC的输出电压和功率密度更佳,阳极室的搅拌有利于提升电池产电和除污性能。实验确定了基于猪场废水处理微生物燃料电池的较优运行因素,为推动微生物燃料电池在污水处理方面的实际应用提供参考。  相似文献   

4.
微生物燃料电池处理含铬废水并同步产电   总被引:3,自引:1,他引:2  
以葡萄糖为阳极燃料、含铬废水为阴极液,碳毡为阳极、石墨板为阴极构建了双室微生物燃料电池,考察了阳极条件(底物浓度)及阴极条件(pH、初始六价铬浓度)对含铬废水的降解及MFC的产电性能的影响.结果表明低阴极液pH和高初始Cr(Ⅵ)浓度能改善MFC产电性能.当pH=2、初始六价铬浓度为177 mg/L、反应时间为10 h时,最大输出功率为108 mW/m~2,六价铬去除率为92.8%.阳极底物浓度对微生物燃料电池的性能也有影响.在微生物燃料电池中,阴极极化较小,表明该燃料电池有稳定的性能,微生物燃料电池对含铬废水的处理有应用潜力并能同步产电.  相似文献   

5.
印霞棐  刘维平 《化工进展》2015,34(4):1152-1158,1170
实验以有机废水为阳极底物,以活性污泥中的混合菌为阳极接种微生物,以含铜废水为阴极液,构建双室MFC,探讨电极对MFC同时处理有机废水和含铜重金属废水产电性能的影响.结果表明:MFC对阳极有机废水COD的去除率最高为79.1%,对阴极液中Cu2+的去除率最高为95.6%.活性炭/石墨棒电极MFC产电性能最优,开路电压最高为800mV,是石墨棒电极MFC的1.25倍,是活性炭/碳纸电极MFC的1.3倍,是碳纸电极MFC的1.5倍.当电极距离为2cm时,MFC开路电压580mV,内阻为181Ω,产电性能最优.电极表面积为75cm2时,MFC的开路电压470mV,是电极表面积为50cm2的MFC的1.1倍,是电极表面积为30cm2的MFC的2.1倍.当AAn/Acat=0.4时MFC产能最佳,MFC的开路电压最高为600mV,最大功率密度48.2mW/m2.  相似文献   

6.
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd2+的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd2+去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd2+去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd2+去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd2+去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。  相似文献   

7.
构建了以单过硫酸钾(PMS)为阴极电子受体的双室微生物燃料电池(Microbial fuel cell,MFC),考察了MFC启动过程中同步除污产电性能以及阳极微生物群落的变化特性。结果表明,外接电阻为1 000Ω以及PMS浓度为10 mmol/L的情况下,MFC在1个月内快速启动,其最大输出电压、功率密度以及有机物去除率分别为972 m V、16. 367 W/m3和99. 41%。高通量测序表明,MFC启动过程中,阳极微生物群落的多样性降低,但丰度增加;成熟的阳极生物膜中主要产电微生物是Proteobacteria菌门的Azospirillum(50. 89%)、Desulfovibrio(4. 38%)、Pseudomonas(2. 45%)、Comamonas(1. 22%)以及Sphingopyxis(1. 26%),Bacteroidetes菌门的Proteiniphilum(1. 27%),Firmicutes菌门的Fusibacter(1. 3%)等,这是产电性能提升的主要原因。  相似文献   

8.
实验分析了阴极硝化耦合阳极反硝化微生物燃料电池在不同外阻(10、100、500Ω和无穷大)下,电池的产电性能、阴极液和阳极液的电导率以及脱氮除碳能力的变化情况。结果表明,在低电阻下,输出的稳定电流较大,有机物降解速率较快,TN去除率较高。当外阻为10Ω时,输出的稳定电流是3.61 m A,COD的去除速率最快为10.33mg/(L·h),在运行160 h时TN去除率达到100%。MFC运行过程中,阳极溶液的电导率逐渐减小,阴极溶液的电导率逐渐增大。当外阻为10Ω时,阴阳极溶液的电导率差最大。CV扫描表明外阻对阳极生物膜氧化还原能力有影响,且低电阻下阳极形成的生物膜上产电活性菌的氧化能力越强。  相似文献   

9.
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd~(2+)的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd~(2+)去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd~(2+)去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd~(2+)去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd~(2+)去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。  相似文献   

10.
产电微生物与电池阳极之间的电子传递效率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过对阳极材料的改进和修饰可以有效地降低阳极反应的活化能垒,提高电子传递效率,进而提高MFC产电性能.详细介绍了近年来MFC阳极材料的国内外研究进展,并针对当前研究所面临的问题,提出了今后MFC阳极的发展方向.  相似文献   

11.
以沼液为原料的微生物燃料电池产电降解特性   总被引:1,自引:0,他引:1  
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kΩ,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

12.
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

13.
以经过预处理的厌氧活性污泥为阳极菌种,模拟有机废水为阳极底物,人工模拟含铜废水为阴极液,构建双室MFC反应器,考察以铜离子为阴极电子受体条件下的MFC产电性能与废水处理效果。结果表明:阴极液为5 g/L的硫酸铜溶液时,最大开路电压为0.531 V,最大功率密度为49.6 mW/m~2,内阻为326Ω。通过改变阴极液浓度、电极材料等条件进一步提高其产电性能,当阴极液硫酸铜质量浓度为3 g/L、电极材料为石墨棒、导线为钛丝时,产电性能最优,最大功率密度为75.7 mW/m~2,Cu~(2+)去除率为91.9%。  相似文献   

14.
微生物燃料电池对废水中对硝基苯酚的去除   总被引:4,自引:1,他引:4  
在以碳纸为阳极、空气电极为阴极、葡萄糖和对硝基苯酚为混合燃料的直接空气阴极单室微生物燃料电池中,考察了微生物燃料电池(MFC)对对硝基苯酚的降解及MFC的产电特性.结果表明MFC对废水中不同浓度的对硝基苯酚均有一定的去除效果,400 mg/L的对硝基苯酚降解4d的去除率74.1%,降解6 d的去除率为82.1%.MFC的输出电压最高为0.293V(外阻1 000Ω),最大输出功率密度为56.5 mW/m3.  相似文献   

15.
《应用化工》2022,(2):402-406
构建了序批式A/O-MFC运行装置,以垃圾填埋场渗滤液为底物,考察A/O-MFC在不同浓度渗滤液作为阴极液的产电性能和污染物去除效果。结果表明,MFC两极的COD、氨氮的去除率均随阴极渗滤液浓度的增加而增大,且阴极室去除效果明显好于阳极室。MFC输出电压随阴极渗滤液浓度的增加而增大,高效脉冲波动幅度随渗滤液浓度增加而减缓。最大功率密度分别0.030,0.096,0.129 W/M2。第3阶段功率密度分别是前两个阶段4.30,1.34倍。可见,微生物燃料电池产电能力随阴极渗滤液浓度的增加而增大,处理高浓度垃圾渗滤液的A/O-MFC的除污-产电性能最好。因此,以垃圾填埋场的渗滤液作为底物运行A/O-MFC具有可行性。  相似文献   

16.
构建了序批式A/O-MFC运行装置,以垃圾填埋场渗滤液为底物,考察A/O-MFC在不同浓度渗滤液作为阴极液的产电性能和污染物去除效果。结果表明,MFC两极的COD、氨氮的去除率均随阴极渗滤液浓度的增加而增大,且阴极室去除效果明显好于阳极室。MFC输出电压随阴极渗滤液浓度的增加而增大,高效脉冲波动幅度随渗滤液浓度增加而减缓。最大功率密度分别0.030,0.096,0.129 W/M~2。第3阶段功率密度分别是前两个阶段4.30,1.34倍。可见,微生物燃料电池产电能力随阴极渗滤液浓度的增加而增大,处理高浓度垃圾渗滤液的A/O-MFC的除污-产电性能最好。因此,以垃圾填埋场的渗滤液作为底物运行A/O-MFC具有可行性。  相似文献   

17.
为提高微生物燃料电池(MFC)的废水处理效果和发电性能,制备了一种海藻酸钠-聚季铵盐11/碳毡(SA-PQ-11/CF)阳极,分别以制药废水和糖蜜废水为阳极液,以碳毡为阴极,构建微生物燃料电池(MFC)实验系统,通过扫描电子显微镜(SEM)、电化学阻抗谱(EIS)、循环伏安特性(CV)、化学需氧量(COD)对其性能进行表征。结果显示,SA-PQ-11/CF阳极具有较大的比表面积,MFC的溶液电阻和电荷转移电阻也得到明显降低。阳极液为制药废水时,采用SA-PQ-11/CF阳极的MFC的稳态输出电压和COD去除率分别约为0.22 V和62%,较常规碳毡阳极时分别提高了100%和130%。阳极液为糖蜜废水时,采用SA-PQ-11/CF阳极的MFC的稳态输出电压和COD去除率分别为0.15 V和43%,分别较采用常规碳毡阳极时提高了275%和95%。基于SA-PQ-11的阳极改性能够有效提高MFC的废水处理效果和产电能力。  相似文献   

18.
以厌氧污泥为接种微生物构建H型双室微生物燃料电池,考察不同电极材料(碳纸和碳布)对微生物燃料电池(MFC)产电性能的影响。结果表明,采用碳布为电极材料的MFC启动更快,18 h达到稳定,但在稳定期采用碳纸为电极材料比采用碳布为电极材料的MFC电压高出20 m V左右。采用碳布电极材料的MFC在启动初期的最大功率密度为4. 7 m W/m~2,内阻为1 782Ω;采用碳纸电极材料的MFC在启动初期的最大功率密度为8. 5 m W/m~2,内阻为1 125Ω,且驯化结束后稳定期的电压(313 m V)比碳布电极材料的MFC(282 m V)高,故MFC电极材料采用碳纸的产电效果优于碳布。  相似文献   

19.
微生物燃料电池阳极修饰的研究进展   总被引:2,自引:0,他引:2  
微生物细胞与电池阳极之间的电子转移速率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过阳极修饰可以促进电子转移速率,进而提高MFC产电性能.综述了MFC阳极修饰的研究进展.  相似文献   

20.
张元浩  高常飞  刘珂萌  王红波 《广东化工》2022,(20):118-120+132
本研究在污泥生物炭中掺杂氮,经高温灼烧后利用PVDF附着在粗糙多孔的火山岩表面,实现对微生物燃料电池(MFC)中阳极材料的改性,并使用普通未有氮掺杂的活性炭作为对照组的阳极材料。制备的氮掺杂的阳极材料具有良好的生物附着性、较大的电化学反应活性面积。改性后的MFC在稳定运行一段时间后,其周期内最高输出电压达到0.666 V,最大输出功率密度达到0.13 W/m2。氮掺杂污泥生物炭改性后的阳极材料辅助MFC开展模拟有机废水的处理,化学需氧量(COD)、氨氮(NH4+-N)、总磷(TP)的去除效率分别为87.1%、77.7%和93.5%。研究结果表明采用氮掺杂污泥生物炭的火山岩辅助MFC,不仅具有良好的产电性能,对有机废水中处理中也表现出优异的处理效果,该研究利用污泥和火山岩大大降低了阳极材料的制备成本,增加了微生物的附着面积,提高了MFC的产电性能,应用前景广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号