首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
孔芹  方浩  夏黎明 《化工学报》2014,65(8):3122-3127
外切-b-葡聚糖酶是纤维素酶的重要组分之一,提高该组分的活力是增强纤维素酶协同降解性能、降低纤维素水解成本的关键。分别采用微晶纤维素琼脂平板法和滤纸崩解法,对已有的基因重组转化子进行筛选试验,获得了6个优良转化子,其滤纸崩解速率和微晶纤维素琼脂平板上的生长速率都较大。进一步在摇瓶条件下进行复筛试验,获得了外切-β-葡聚糖酶(C1)高产转化子Trichoderma reesei ZU-101,液体培养48 h,其C1酶活力可达18.24 U·ml-1,是出发菌株的2.16倍;分析结果表明:重组转化子的纤维素酶体系中内切-b-葡聚糖酶和纤维二糖酶的活力与出发菌株相比变化不大,但由于外切-b-葡聚糖酶活力得到了大幅度提高,纤维素酶的总活力(滤纸酶活力FPA)也提高了61.9%。采用纤维素酶对碱预处理玉米秸秆进行酶解试验,当酶用量为20 FPIU·(g底物)-1,水解48 h,重组转化子T.reesei ZU-101纤维素酶的酶解得率高达94.4%。本文的研究结果在可再生纤维素资源的生物转化与利用方面具有广阔的应用前景。  相似文献   

2.
中性内切-β-葡聚糖酶在棉织物生物整理方面具有重要的应用价值,研究首先从特异腐质霉(Humicola insolens)菌株中克隆到一个中性内切-β-葡聚糖酶基因,将该基因置于里氏木霉(Trichoderma reesei)纤维二糖水解酶I强启动子Pcbh1(及其信号肽)和终止子Tcbh1之间,并以pCAMBIA1300为载体骨架构建重组质粒pCB-PHT。采用根瘤农杆菌介导转化技术将重组质粒pCB-PHT导入里氏木霉的分生孢子中,进一步筛选得到八个重组里氏木霉转化子。摇瓶发酵培养72 h时,发酵液的中性内切-β-葡聚糖酶活力最高可达到98.8 IU mL 1左右,是出发菌株的5.1倍。研究成功地实现了外源中性内切-β-葡聚糖酶在丝状真菌里氏木霉中的重组与胞外表达,有关研究结果将在牛仔布水洗工业中发挥出重要作用。  相似文献   

3.
纤维二糖水解酶II(CBH II)是纤维素酶的重要组分之一,对纤维素酶的水解性能有着重大影响,而里氏木霉(Trichoderma reesei)纤维素酶制剂中纤维二糖水解酶II明显不足,为了优化其酶系结构,采用了基因重组技术构建CBH II高产菌株:将里氏木霉CBH II基因置于里氏木霉强启动子Pcbh1(及其信号肽)和终止子Tcbh1之间,并进一步以pCAMBIA1300为载体骨架,构建成含潮霉素B抗性标记的重组质粒pCAMBIA1300-hph-PsCT。以里氏木霉ZU-02为宿主,采用根瘤农杆菌介导转化技术将重组质粒转入宿主分生孢子。以潮霉素B为抗性标记初筛到324个阳性转化子,进一步通过复筛,在以微晶纤维素为唯一碳源的筛选培养基上获得8个生长较快的优良转化子。在摇瓶条件下,分别对8个转化子进行产酶试验,培养48 h时,纤维二糖水解酶活力最高可达18.24 U·mL-1,是出发菌株的2.51倍。本结果对于里氏木霉纤维素酶的定向进化、提高其对纤维素的协同糖化效率具有重要意义。  相似文献   

4.
根据阳性转化子在IPTG诱导下可以在LB-CMC平板上产生水解圈的原理,在初筛和摇瓶复筛的基础上,采用易错PCR法对β-1,4-葡聚糖内切酶基因进行定向进化,从阳性转化子中筛选酶活提高的突变菌株.突变酶活性是野生酶的1.32倍,催化效率约为野生酶的1.26倍.基因测序结果表明,突变酶基因DNA序列中有3个碱基发生了突变...  相似文献   

5.
中性内切-β-葡聚糖酶在纺织、食品和造纸等领域中应用广泛。研究采用一株重组里氏木霉(Trichoderma reesei)生产中性内切-β-葡聚糖酶,发酵液经SDS-PAGE检测,显示了来自特异腐质霉(Humicola insolens)内切-β-葡聚糖酶的蛋白条带(约52 kDa)。对重组里氏木霉的发酵性能进行了研究,表明碳源对内切-β-葡聚糖酶的形成有重要影响,当采用乳糖与微晶纤维素的复合碳源时,酶活力和产率都可明显提高。利用玉米浆粉作为氮源,其适宜浓度为12 g·L-1。培养基初始pH值对发酵酶活力及产率有一定影响,适宜的初始pH值为5.0。在2 m3的发酵罐进行产酶试验,发酵96 h酶活可高达8012 U·mL-1。酶学性质研究表明:该酶在50℃以下稳定,在45~55℃有明显的催化作用,其最适催化温度为50℃。在pH 5.0~7.0稳定性较好,并且有明显的催化作用,其最适催化pH值为6.0。生物整理实验结果显示重组里氏木霉所产酶液用于牛仔布水洗时反染较少,水洗效果良好。  相似文献   

6.
<正>在测定纤维素粗酶样品对不溶性固体纤维素的水解活力时,尽管选用同一纤维素底物,并以同样的纤维素粗酶样品在相同温度下水解,测定结果受反应条件如纤维素底物浓度、纤维素酶浓度以及水解时间等因素的影响而相互差别很大。而纤维素粗酶作为多个纤维素酶组分的混合物,其糖化能力更加能够反应其中各个组分之间的协同水解转化能力。本文中选择了比底物水解率(SSC)作为纤维素酶浓度的函数,即单位纤维素酶每分钟对滤纸的水解百分比作为纤维素粗酶样品不同浓度的目的函数,从而克服了以上条件对纤维素酶活测定的影响。并以水解过程中SSC瞬时速率的AUC(Area under curve)对加入纤维素酶的量做图得到的斜率评价纤维素酶样品的水解能力。经检验,该方法也适用于以棉纤维、微晶纤维素PH101和磷酸膨胀纤维素等不同纤维材料为底物时纤维素酶粗酶样品糖化能力的测定。  相似文献   

7.
纤维素的酶水解糖化   总被引:25,自引:2,他引:23  
纤维素为自然界存在最多的再生有机资源,能水解成葡萄糖,加工成食品、燃料、化工产品等。酸和酶都能催化水解,但酶法效果好,所得水解液的纯度高。多年来对于纤维素的酶法水解研究工作很多,但还有若干问题有待解决,尚未发展成适于工业生产应用的好工艺。本文扼要地综述纤维素的酶水解机理和纤维素物料的应用工艺。纤维素酶系内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖甙酶的混合物,这三种酶协同起水解作用。纤维素物料不纯,还有伴生物半纤维素和木质素共同存在,需要预先处理,破坏纤维素的结晶性,提高水解效能,分离开半纤维素和木质素,加以好的利用,提高经济效益。  相似文献   

8.
刺糙青霉(Penicillium echinulatum)可产生一种耐热、耐碱的新型内切-β-葡聚糖酶(EGL1),具有重要的工业应用价值。鉴于野生型刺糙青霉的产酶水平低,将该菌的内切-β-葡聚糖酶基因经过密码子优化后,在里氏木霉(Trichoderma reesei)中进行重组与表达,采用里氏木霉强启动子Pcbh1(纤维二糖水解酶Ⅰ)及其信号肽,以pCAMBIA1300为载体骨架构建重组质粒pCB-PET,并采用根瘤农杆菌介导转化技术将重组质粒pCB-PET导入里氏木霉的分生孢子中,在潮霉素抗性平板上筛选获得5个优良的重组转化子。将5个转化子重复传代培养10个批次后,分别提取染色体DNA进行PCR验证,均可检测到目的基因Egl1n(密码子优化后的Egl1)条带,说明该基因已稳定地整合到里氏木霉基因组中。采用SDS-PAGE蛋白电泳对转化子培养液进行检测,获得了与目的基因表达产物相符的蛋白条带(约41 kDa),表明Egl1n已在重组里氏木霉中成功实现了胞外表达。重组转化子在30℃,摇瓶转速200 r×min~(-1)条件下培养48 h,取发酵上清液在pH 8.0,60℃条件下,测得内切-β-葡聚糖酶活力为382.6 U×mL~(-1),是出发菌株的22.5倍。酶学性质研究结果表明:该酶耐热性能较好,在70℃以下性能稳定,其最适催化温度为60℃;该酶在pH 5.0~10.5稳定性较好、具有明显的催化活性,其最适pH为8.0,属于碱性纤维素酶。从而成功地实现了刺糙青霉内切-β-葡聚糖酶基因在里氏木霉中的重组与胞外表达,有关研究结果在里氏木霉纤维素酶的定向进化及其工业化应用中具有重要的促进作用。  相似文献   

9.
从一株产碱性纤维素酶的短小芽孢杆菌H12中克隆了编码β-1,4-葡聚糖内切酶的基因,对其基因序列及其酶的结构域进行了分析预测,同时将该酶的基因构建于大肠杆菌表达载体pET20b中,获得重组表达载体pET20b-EglA,将其转化至大肠杆菌BL21(DE3)菌株中进行表达。结果表明,该基因大小为1980 bp,共编码659个氨基酸;对β-1,4-葡聚糖内切酶结构域分析表明,该酶由两个不连续的结构域组成,其一为N-端催化结构域,由糖基水解酶家族9组成,其二为C-端底物结合结构域,由碳水化合物绑定结构域家族3组成;平板实验结果表明,β-1,4-葡聚糖内切酶基因在重组大肠杆菌中得到了良好的分泌表达;SDS-PAGE电泳图谱表明该酶的分子大小约为73 kDa。  相似文献   

10.
采用NTG和UV连续处理绿色木霉IFO31137菌株(TTichodermaviTideIFO31137),并对菌株纤维素酶活力和酶吸附率作双重比较,获得突变株SO-465。其微晶粉末纤维素酶(Avicelase)活力提高8.2倍,酶对废物的吸附率增加约5倍。突变菌株对四种纤维素底物(微晶粉末纤维素、滤纸、纸浆纤维和KCFloc)的水解率分别为87.5%、81.9%、90.5%和83.2%,比原始菌株增加幅度为101%、230%、83%和74%。  相似文献   

11.
里氏木霉(Trichoderm reesei)是重要的纤维素酶生产菌,为了显著提高其产酶性能,拟利用分子生物学技术构建高产的基因工程菌株.将前期优化后的瘤胃厌氧真菌内切-β-葡聚糖酶基因af2置于里氏木霉纤维二糖水解酶Ⅰ强启动子Pcbh1(及其信号肽)和终止子Tcbh1之间,并进一步以pCAMBIA1300为载体骨架,...  相似文献   

12.
应用低能氮离子(N+)注入技术对纤维素酶产生菌里氏木霉(Trichoderma reesei)进行诱变选育,在能量为10 keV,注量为150×10^14和200×10^14N+/cm^2的条件下分别筛选得到3株纤维素酶高产菌株,连续5代遗传稳定性实验结果表明,所得到的高产菌株遗传稳定性较好,羧甲基纤维素酶活力均提高到3.300 IU/mL以上,较出发菌株(2.698 IU/mL)提高了20.0%以上。采用Plackett-Burman实验设计法和旋转中心组合设计法系统地研究高产菌株150-1-1发酵营养因子组成,得到了纤维素酶产量随葡萄糖、麸皮和微晶纤维素等营养因子的变化规律及相应的响应面分析图。实验结果表明,葡萄糖、麸皮和微晶纤维素浓度与纤维素酶活存在显著的相关性,当葡萄糖浓度为4.9 g/L,麸皮浓度为23.0 g/L,微晶纤维素浓度为7.7 g/L时,150-1-1纤维素酶滤纸酶活力达到2.439 IU/mL,较优化前(2.000 IU/mL)提高了22.0%。  相似文献   

13.
根据菌株菌落、菌丝体、孢子等形态特征及其生理特性,初步鉴定高产纤维素酶的丝状真菌为尖孢镰刀菌(Fusarium oxysporum),命名为XA-1。考察了不同碳源及氮源、培养温度、初始pH等因素对XA-1产酶的影响,并研究了该菌所产纤维素酶酶学性质及酶解性能。该菌的最适产酶条件为:分别以水葫芦和硫酸铵为碳、氮源,30℃,pH 5.0,培养6 d后,内切葡聚糖酶(CMCase)、β-葡萄糖苷酶(β-Gluase)和滤纸酶活力(FPA)分别达到4 083.2、3 258.8 U/g和773.2 U/g(成熟曲)。CMCase、β-Gluase最适反应温度为45℃,FPA则为55℃;CMCase、β-Gluase和FPA的最适反应pH分别为5.0、4.5和5.0。菌株XA-1纤维素酶酶解香蕉秆或水葫芦32 h后,酶解得率分别达到27.3%和29.8%。菌株XA-1在纤维素酶开发及转化秸秆类纤维素为可发酵糖方面显示出较好的应用前景。  相似文献   

14.
β-葡萄糖苷酶是一种糖苷水解酶,可水解纤维二糖生成两分子的葡萄糖。该酶在纤维素糖化水解过程中起关键性作用,是纤维素酶代谢途径中的限速酶。嗜热真菌因其极端的生长环境,是耐高温酶的主要来源,嗜热真菌来源的β-葡萄糖苷酶种类日益丰富。构建了含13种嗜热真菌β-葡萄糖苷酶的进化树,并对嗜热真菌中β-葡萄糖苷酶的来源、嗜热真菌β-葡萄糖苷酶基因的克隆与表达、及已知的β-葡萄糖苷酶调控因子进行了综述。  相似文献   

15.
采用稀释涂平板法从宁夏湿地土壤样品中筛选出一株纤维素降解活力较高的菌株C6-2,经鉴定该菌株为烟曲霉菌(Aspergillus fumigates),对菌株C6-2发酵产酶条件及其所产酶的部分酶学性质进行了研究。结果表明,菌株C6-2的最适培养温度为30℃,该菌株能在以微晶纤维素或羧甲基纤维素钠或小麦秸秆为唯一碳源的培养基中生长,并可产生具有较好热稳定性的羧甲基纤维素酶、木聚糖酶和葡聚糖酶。  相似文献   

16.
生物燃料将成为主要新能源之一,以玉米芯为原料,碱氧和稀酸为处理剂对其进行2步法预处理,使原料中纤维素相对含量增加,以提供转化乙醇的纤维素原料。采用扫描电镜表征2步法预处理玉米芯,其表面形成疏松、沟纹和孔洞形态,这有利于酶解。采用瑞氏木霉生产的纤维素酶水解该预处理玉米芯,利用正交实验得到酶水解优化条件为,酶用量75 FPU g 1,底物质量浓度60 g L 1,pH值4.8,反应温度50℃,还原糖得率可达69.3%。为提高纤维素酶中β-葡聚糖酶的酶活效率,并减少产物葡萄糖对β-葡聚糖酶的抑制作用,进一步优化β-葡聚糖酶加量。结果表明,当β-葡聚糖酶加量达6.5 CBU时,还原糖得率显著提高到78.2%。这表明该预处理玉米芯是有效降解的玉米芯原料,适于提高还原糖得率。  相似文献   

17.
应用低能氮离子(N+)注入技术对纤维素酶产生菌里氏木霉(Trichoderma reesei)进行诱变选育,在能量为 10 keV,注量为150×1014和200×1014 N+/cm2的条件下分别筛选得到3株纤维素酶高产菌株,连续5代遗传稳定性实验结果表明,所得到的高产菌株遗传稳定性较好,羧甲基纤维素酶活力均提高到3.300 IU/mL 以上,较出发菌株 (2.698 IU/mL) 提高了20.0%以上。采用Plackett-Burman实验设计法和旋转中心组合设计法系统地研究高产菌株 150-1-1 发酵营养因子组成,得到了纤维素酶产量随葡萄糖、麸皮和微晶纤维素等营养因子的变化规律及相应的响应面分析图。实验结果表明,葡萄糖、麸皮和微晶纤维素浓度与纤维素酶活存在显著的相关性,当葡萄糖浓度为4.9 g/L,麸皮浓度为23.0 g/L,微晶纤维素浓度为7.7 g/L时,150-1-1纤维素酶滤纸酶活力达到2.439 IU/mL,较优化前 (2.000 IU/mL) 提高了22.0%。  相似文献   

18.
利用刚果红染色法筛选产纤维素酶菌株,采用分子生物学技术和形态学观察作为鉴定手段,通过滤纸条崩解实验测定实际降解能力.以葡聚糖内切酶活(CMCase)和滤纸酶活(FPase)为指标,进行单因素和响应面试验优化.结果表明,获得一株产纤维素酶细菌(Xh-12),鉴定为不动杆菌属,发酵培养7 d后对滤纸条的减重率可达54.4%...  相似文献   

19.
从拟康氏木老霉TrichodermapseudokoninguS-38菌株发酵液中分离纯化了一个外切葡聚糖纤维二糖水解酶(CBHI,EC3.2.1.91)和一个内切葡聚糖酸(ECI,EC3.2.1.4)。经木瓜蛋白酶有限酶切,分别都得到了一个对可溶性废物具有与天然酶相近活力的催化结构域和合两个短肽的能吸附纤维素的吸附结构域。C末端测定结果表明:内切酶的催化结构城位于天然萌分子的C端,圆二色谱测定表明其催化域具有与天然酶相似的结构特征。由有限醇切内、外切葡聚糖酶得到两个短肽的混合物还都表现了具有破坏纤维素聚合物结构,形成短纤维的能力。外切纤维素酶的N端是封闭的,全酶分子的含糖量为12%,而催化域仅为1.5%;远紫外CD测定表明:CBHI分子缺乏220um的“trough”.a-螺旋含量也很少;具195nm的正峰和205-215m的负峰,表明了它是一个窗含β-结构的蛋白。当降低pH值(6~3.2),CBHI和其催化结构域(CBHI-core)的构象只发生了微小的改变;而当纤维二糖加入后,CBHI和CBHI-core的构象不再随pH位变化而变化,两者的光谱性质也非常相似,这表明CBHI的光谱性质主要由其催化域决定。对外切葡聚塘纤维二糖水解酶和内切葡聚糖酶发生N-糖基化时的序列模式,及其与酶蛋白结构和功能的关系也进行了讨论。  相似文献   

20.
半纤维素作为木质纤维素的重要组分之一,通过氢键与纤维素的微纤丝结合,严重阻碍了纤维素表面与纤维素酶的接触,降低了酶解的效率。该试验以碱处理甘蔗渣作为底物,通过添加不同量的半纤维素酶去除不同比例的半纤维素。通过成分分析、X射线衍射(XRD)和扫描电镜(SEM)等手段分析添加半纤维素酶前后残渣的结构和酶解特性变化,发现随着半纤维素酶添加量的增大,残渣中木质素所占的比例逐渐增大,结晶指数逐渐增大,电镜表面沟壑逐渐加深,纤维束之间结构变得疏松。以半纤维素酶处理过的甘蔗渣作为底物,按照5FPU/g底物加入纤维素酶水解72h,与不添加半纤维素酶对照组相比,添加1600U/g半纤维素酶处理的试验组木聚糖的转化率提高了74.24%,葡聚糖转化率提高了35.30%。通过半纤维素酶添加可以有效促进纤维素酶解过程的进行,节约反应时间提高酶解转化率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号