首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of the analysis by neutron activation of six samples from the Luna 20 mission and one sample of < 1 mm fines from Apollo 16 are reported. The concentrations of the rare-earth elements (REE) in the samples of fines from Luna 20 and Apollo 16 are less than those found for corresponding materials from the mare areas but a negative Eu anomaly is still present. The concentrations of the REE in fines from Luna 20 are only about two-thirds as great as in the sample of Apollo 16 fines, but the concentrations of Co, Sc and Cr are greater by factors ranging from 1.5 to 2.3.  相似文献   

2.
Glass compositions in the Luna 20 soil indicate a minor contribution of mare rocks and a major contribution of highly feldspathic highland material. Glasses with the composition of Highland basalt (anorthositic gabbro or norite) predominate in a range of highly aluminous glasses.The analyses of minerals in the soil show that the highland rocks have a unique assemblage of minerals that can readily be distinguished from the mineral assemblages of either mare or KREEP basalts. The soils are characterized by abundant anorthitic (An92–99), low-Fe plagioclase. Highly magnesian orthopyroxenes, pigeonites and augites are the most prominent pyroxenes. Unlike mare basalt pyroxenes, clinopyroxenes with intermediate Ca values are not abundant, but extreme iron enrichment towards pyroxferroite does occur. Olivines are more abundant than at other sites and are Mg-rich, low in Ca and Cr. Spinels with compositions approaching MgAl2O4 predominate over pleonastes and chromites. Ilmenite and metal are present but not abundant.These data establish the unique nature of the minerals in the highland soils. The mineral compositions are consistent with derivation from a suite of highly feldspathic rocks in which Highland basalt compositions predominate. Some of the mineral data, particularly from the pyroxenes, are suggestive of surface or near-surface processes, rather than plutonic crystallization.  相似文献   

3.
The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a ‘typical’ highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by ‘third events’ about 2.0 b.y. ago. A lunar evolution model is discussed.  相似文献   

4.
Micron-sized soil grains from the Luna 20 mission are the most lightly irradiated we have examined, in contrast to micron-sized grains from the Luna 16 soil, which are the most heavily irradiated. Radiation damage in micron-sized grains is inversely correlated with albedo of the soil. The absence of angular, amorphous grains in Luna 20 supports our previous contention that such grains in Luna 16 were produced by intense radiation damage.  相似文献   

5.
The Luna 20 soil (< 125 μm fraction) has a relatively low δO18 (5.7%.), compared to other lunar soils (5.8 to 6.3%.). This implies either a low-O18 source material or an unusually small O18 enrichment in the processes of soil formation and maturation.  相似文献   

6.
Abundances of 22 elements, including 9 rare earth elements (REE), have been determined by ‘monostandard’ instrumental neutron activation analysis of samples from the Luna 20 soil and in 6 rock fragments, including a crystalline rock of highland origin, a breccia of similar composition, a glass and a feldspar grain. The soil appears to have been contaminated with W and Mo. The REE content of the soil is very low, being close to 2.3 times below the level in the Luna 16 soil. Sampling errors, for most elements, are negligible in the case of analyses performed on one or several tens of mg of soil, but they become significant on crystalline rock fragments in the 1–2 mg range.  相似文献   

7.
The δ O18 and δ Si30 analyses of the Luna 20 soil sample are +6.18 and +0.22, respectively, relative to the SMOW and Rose Quartz standards. However, an anomalous δ O18 value of +8.13 was obtained on one aliquot of the Luna 20 sample. Possible reasons for this apparently erroneous result are discussed.  相似文献   

8.
Fragments of igneous rocks, glasses and minerals comprise 25 per cent of the studied sample of the Luna 20 soil. Basalt fragments in the Luna 20 soil are similar to basalts from the mare regions of the Moon—in that they are characterized by the presence of iron-rich olivines and pyroxenes. On the basis of the FeO contents of plagioclases, it appears possible to distinguish between the plagioclase of the mare and highland regions of the Moon. Other igneous rock fragments are anorthosite, gabbroic anorthosite and anorthositic gabbro. The most abundant rock type (75 per cent of the sample) is microbreceia. One third of the fragments of microbreccia have undergone thermal metamorphism resulting in the homogenization of phases and the development of poikioblastic and hornfelsic textures. Excluding the basalt fragments, the dominant minerals in the Luna 20 soil are anorthite (An93–98), magnesium-rich orthopyroxenes, intermediate clinopyroxenes and olivine (< Fa50). Chemically, the Luna 20 and Apollo 16 soil samples are similar, but the Luna 20 soil is slightly depleted in aluminum and calcium and enriched in iron and magnesium relative to the Apollo 16 soils. The slight difference in bulk chemistry of the two soils may be a result of the presence of a minor amount of mare material in the Luna 20 soil and its apparent absence in the Apollo 16 soils.  相似文献   

9.
Luna 16 and Luna 20 samples were analyzed for volatilizable species using vacuum pyrolysis to 1400°C. The major gaseous products evolved (ranging from 10–650 μg/g) were H2O, CO, CO2, N2 and CH4. Minor components (all < 10 μg/g) included NH3, HCN, NO, SO2, H2S, C2H2, C2H4, C2H6, C3H6 and higher hydrocarbons, benzene, toluene, and the polymeric contaminants Teflon® and silicone oil. The total carbon and nitrogen contents (μg/g) for these sieved samples (< 125 μm) were: Luna 16—C 418, N 134 and Luna 20—C 380, N 80.  相似文献   

10.
The La Luna Formation (Maraca section), Maracaibo Basin, was studied by means of V and Ni analysis of the bitumen, total organic carbon (TOC), total sulfur (St), major elements (Si, Al, Fe, Mg, Mn, Ca, Ti, Na, K, P), trace elements (V, Ni, Co, Cr, Cu, and Zn), and electron microprobe analysis (EPMA) of the whole rock, and St, major elements (Si, Al, Fe, Mg, Mn, Ca, Ti, Na, K, P), trace elements (V, Ni, Co, Cr, Cu, Zn, Mo, Ba, U, Th) and rare earth elements (La, Ce, Nd, Sn, Eu, Th, Yb, Lu) of the carbonate-free fraction. The results are discussed based on the organic and inorganic association of trace elements and their use as paleoenvironmental indicators of sedimentation. An association between V and organic matter is suggested by means of correlation between V and Ni vs. TOC, the use of EPMA (whole rock) and V and Ni concentrations (carbonate-free fraction), whereas Ni is found in the organic matter and the sulfide phase. Fe is present as massive and framboidal pyrite, whereas Zn precipitates into a separate phase (sphalerite), and Ni, Cu and, in some cases, Zn, can be found as sulfides associated with pyrite. Concentrations of V and Ni (bitumen), TOC, St, V, Ni, Cr, Cu and Zn (whole rock), U, Th, Mo (carbonate-free fraction) are indicative of changes in the dysoxic sedimentation conditions in the chert layers (TOC, St, V, Ni, Cu and low Zn and V/Cr <4) to euxinic anoxic conditions in the argillaceous limestone (TOC, St, V, Ni, Cu and high Zn and V/Cr >4). In the sequence corresponding to the argillaceous limestone, variations in the concentrations of TOC, St, V, Ni, Zn, Cu and Cr (whole rock) can be observed, also suggesting variable sedimentation conditions. The following is proposed: (i) sedimentation intervals under euxinic conditions associated with high contribution and/or preservation of organic matter, allowing a high concentration level of V and Ni in the organic phase and the accumulation of Cu, Zn and Ni (in a smaller proportion) in the sulfide phase; (ii) sedimentation intervals under anoxic conditions and in the presence of relatively lower H2S, which allowed lower concentrations of V and Ni in the organic phase and higher concentrations of Cu, Zn, and Ni in the sulfide phase. Rare earth elements (REE) concentrations exhibit a marked increase in Ce, Nd, Sm, Eu, Y and Lu for the QM-3 interval, relative to Post-Archean Average Shale (PAAS). REE enrichment in shales has been related to the presence of phosphate minerals such as monazite or apatite. However, these minerals were not detected through XRD or EPMA in the whole rock or in the carbonate-free fraction. The association of REE with organic matter is suggested due to the absence of phosphate minerals, although assessment of these elements require further analysis.  相似文献   

11.
Cl and P2U5 do not appear to exhibit the same correlation in soils from the Luna 20 and possibly the Luna 16 sites as they do in samples from the Apollo 11–15 sites. Nevertheless, the coherence between labile Cl and other KREEP-related elements is maintained.  相似文献   

12.
Visible and near-infra-red spectra of chemically analyzed grains of glass and minerals from the Luna 20 sample were compared with diffuse reflectance spectra of the bulk soil. As in the spectra of soil samples from other localities on the Moon, pyroxene contributes two broad absorption features near 1 μm and 2 μm. The soil has a high integral reflectance (or albedo) arising from plagioclase, which appears to be the dominant mineral in the lunar highlands. The Luna 20 soil curve is most similar to the reflectance curves of the non-rayed soils at Apollo 16, in agreement with the generally similar mineralogy of these samples. The average pyroxene composition in the Luna 20 soil, as determined from the absorption bands in the diffuse reflectance spectra, and analyses of single crystals, is more calcic than in the lithic fragments. Thus, the soil appears to have a few per cent of admixed material derived from mare basalts. Comparison of the soil spectrum with telescopic curves of nearby areas reveals a close similarity; however, the Luna 20 sample is slightly less mature than expected. Luna 20 may have sampled subsurface material that is fresher than the regional surface soil, or alternatively, the Luna 20 area may contain an admixture of relatively recently exposed material from a ray crater.  相似文献   

13.
14.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U and Zn) were measured by neutron activation analysis in 8 C1 samples (1 Alais, 3 Ivuna, 4 Orgueil) and in 3 C2 samples (one each of Mighei, Murchison, Murray). The results show far less scatter than earlier literature data. The standard deviation of a single measurement from the mean of 8 C1 samples lies between 2 and 14 per cent, except for the following 4 elements: Au ±18 per cent, Ag ±22 per cent, Rb ±19 per cent and Br ±33 per cent. The first two probably reflect contamination and sample heterogeneity, the last two, analytical error. Apparently C1 chondrites have a far more uniform composition than some authors have claimed.The new data suggest significant revisions in cosmic abundance for the following elements (old values in parentheses): Zn 1250 (1500), Cd 1.51 (2.12), Ir 0.72 (0.43) atoms/106 Si atoms. The Br value is also lower, 6.8 vs 20.6, but may be affected by analytical error.Relative to C1 chondrites, the C2 chondrites Mighei, Murchison and Murray are depleted in volatile elements by a factor of 0.508 ± 0.038, much more constant than indicated by oldor data. Ordinary chondrites also show a more uniform depletion relative to the new C1 data. The mean depletion factor of Sb, F, Cu, Ga, Ge, Sn, S, Se, Te and Ag is 0.227 ± 0.027 in H-chondrites. This constancy further strengthens the case for the two-component model of chondrite formation.  相似文献   

15.
The abundances of 24 major, minor and trace elements have been measured by INAA in Luna 20 metaigneous rocks 22006,1 and 22007,1, breccia 22004 and soil 22001,9 and in Apollo 16 soils 62281, 66041 and 66081. An additional 12 trace meteoritic and non-meteoritic elements have also been determined in 22001 and 62281 soils by RNAA. The bulk compositions of L 20 and Ap 16 rocks and soils show close similarity between the two highland sites. There are appreciable differences in bulk compositions between the L 20 highland and the L 16 mare site (120 km apart), suggesting little intermixing of rocks and soils from either site. Luna 20 rocks 22006 and 22007 are nearly identical in chemical composition to Ap 16 metaigneous rocks 61156 and 66095. Luna 20 rocks are feldspathic and are similar to low K-type Fra Mauro basalts. Such rocks and anorthositic gabbros appear to be the major components in highland soils. Luna 20 soil can be distinguished from Ap 16 soils by lower abundances of Al2O3, CaO and large ion lithophilic elements. Luna 20 breccia 22004 probably is compacted soil. All L 20 samples show negative Eu anomalies with SmEu ratios of 5.8, 7.2, 3.9 and 3.3 for rocks 22006, 22007, breccia 22004 and soil 22001, respectively. Norite-KREEP is insignificant, ≤1 per cent, at the L 20 highland site. The derivation of the L 20 soil may be explained by ≈33 per cent of L 20 metaigneous rocks and ≈ 65 per cent anorthositic gabbroic breccia rocks like 15418 (with a positive Eu anomaly) and ≈ 2 per cent meteoritic contributions. Interelement correlations observed previously for maria are also found in highland samples. Luna 20 and Ap 16 soils are low in alkalis. Both soils show an apparent Cd-Zn rich component similar to that observed at the mare sites and high 11 abundances relative to mare sites. The Ap 16 (62281) soil contains a fractionated meteoritic component (probably ancient) of ≈ 1.5 per cent in addition to ≈ 1.9 per cent Cl like material. Luna 20 soil may simply contain 1.9 per cent Cl equivalent.  相似文献   

16.
Six siliceous glass spheres, five siliceous glass-bonded agglutinates and one breccia fragment from Luna 20 LRL sample number 22003 were analyzed by optical microscope, scanning electron microscope, scanning electron microprobe and energy-dispersive techniques. The data suggest that most of the glass spheres were probably derived locally by meteoritic impact processes and that most craters on their surfaces may have occurred from impacts of relatively high velocity particles in the impact-produced debris cloud while the glass sphere was at elevated temperatures. This is suggested by the nature of the craters, the partially buried fragments of plagioclase surrounded by radiating fractures and by the apparent absence of craters on the glass surfaces of the glass-bonded agglutinates. One glass sphere has a surface suggestive of a complex multiple impact origin involving liquid siliceous material and numerous siliceous spherules from 0.1 μm to 1 μm in diameter that may have formed from vaporization and condensation processes possibly in a relatively large scale meteoritic impact event.The surfaces of the siliceous glass spheres have several different types of materials. Concentration of metallic iron spherules on the surfaces of the glass spheres is generally lower than for similar Apollo 11 and 12 glass spheres. This is consistent with reduction processes being of primary importance in the formation of this metallic iron. Surface material composed only of Ca, C and O2, possibly CaCO3, is probably derived from carbonaceous chondrites. Splashes of material rich in Ca, Al, Fe, K and Cl occur. The origin of the relatively low temperature chlorine-bearing melt is unknown but it may be related to vaporization and condensation processes, possibly volcanic in nature, or possibly to partial fusion of components of carbonaceous chondrites. Siliceous surface material rich in potassium may represent either fused splash material of granitic composition or material enriched by vaporization and condensation processes.  相似文献   

17.
为了支撑发展山地特色农业的需要,通过1∶5万耕地质量地球化学调查,获取毕节市耕地土壤微量元素的高精度分析数据。选取B、Mo、Cu、Zn、Mn、Go、I及F作为主要研究对象,分析毕节市耕地土壤微量元素的丰缺状况。统计结果表明,毕节市耕地土壤中微量元素含量总体处于较高水平,B、Mo、Cu、Zn、Mn、Co、I及F平均值分别为67.10 mg/kg、2.14 mg/kg、79.20 mg/kg、143.90 mg/kg、1215.00 mg/kg、30.40 mg/kg、5.84 mg/kg和1009.00 mg/kg。评价结果显示,毕节市耕地土壤微量元素丰缺以丰富-过剩为特征,其中B、Cu、Zn、Mn、Co以丰富等级为主,Mo以上限值等级为主,I以高等级为主,F以过剩等级为主,微量养分状况总体较好。毕节市耕地土壤中微量元素丰缺及分布与成土母质、土壤酸碱度、土壤类型及土地利用方式的影响关系密切,其中成土母质为主要影响因素。研究结果为毕节市农业生产中土壤微量元素的合理利用、作物品质提升及发展山地特色农业等提供了地球化学支撑。  相似文献   

18.
Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt.% and compositions similar to Apollo 10 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (< 13 wt.%) and high FeO (> 18 wt.%) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.  相似文献   

19.
Microscopic and electron microprobe studies were made of polished thin sections of part of a 30-mg sample of 250–500 μm lunar soil returned by Luna 20 from a point between Mare Fecunditatis and Mare Crisium. Very fine-grained lithic (crystalline) rock fragments, composing about one fifth of the total sample, have mineralogical compositions equivalent to various types of gabbro, anorthositic gabbro, gabbroic anorthosite and troctolite, with minor basalt. The textures now observed in these fragments are in large part metamorphic. Twentyseven electron microprobe analyses of minerals from these fragments are presented, including olivine, plagioclase, pyroxene, spinel, nickel-iron and a Zr-Ti-REE mineral possibly similar to ‘phase B’ of Lovering and Wark (1971). Analyses of seven melt inclusions and twenty-eight defocused beam analyses of lithic fragments are also given. Some of the fragments contain ‘gas’ inclusions which, along with the fine grain size, are believed to indicate final crystallization under low pressure near surface conditions. The almost complete absence of granophyric material in this sample raises the question of whether or not there are at least two distinct magmas for the plagioclase-rich terrae rocks from which this soil sample was derived in part.  相似文献   

20.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号