首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
In this study, we consider the application of a simulated annealing (SA) heuristic to the truck and trailer routing problem (TTRP), a variant of the vehicle routing problem (VRP). In the TTRP, some customers can be serviced by either a complete vehicle (that is, a truck pulling a trailer) or a single truck, while others can only be serviced by a single truck for various reasons. SA has seen widespread applications to various combinatorial optimization problems, including the VRP. However, to our best knowledge, it has not been applied to the TTRP. So far, all the best known results for benchmark TTRP instances were obtained using tabu search (TS). We applied SA to the TTRP and obtained 17 best solutions to the 21 benchmark TTRP benchmark problems, including 11 new best solutions. Moreover, the computational time required by the proposed SA heuristic is less than those reported in prior studies. The results suggest that SA is competitive with TS on solving the TTRP.  相似文献   

2.
Two new construction heuristics and a tabu search heuristic are presented for the truck and trailer routing problem, a variant of the vehicle routing problem. Computational results indicate that the heuristics are competitive to the existing approaches. The tabu search algorithm obtained better solutions for each of 21 benchmark problems.  相似文献   

3.
In the truck and trailer routing problem (TTRP) a heterogeneous fleet composed of trucks and trailers has to serve a set of customers, some only accessible by truck and others accessible with a truck pulling a trailer. This problem is solved using a route-first, cluster-second procedure embedded within a hybrid metaheuristic based on a greedy randomized adaptive search procedure (GRASP), a variable neighborhood search (VNS) and a path relinking (PR). We test PR as a post-optimization procedure, as an intensification mechanism, and within evolutionary path relinking (EvPR). Numerical experiments show that all the variants of the proposed GRASP with path relinking outperform all previously published methods. Remarkably, GRASP with EvPR obtains average gaps to best-known solutions of less than 1% and provides several new best solutions.  相似文献   

4.
This paper presents an extension of a competitive vehicle routing problem with time windows (VRPTW) to find short routes with the minimum travel cost and maximum sale by providing good services to customers before delivering the products by other rival distributors. In distribution of the products with short life time that customers need special device for keeping them, reaching time to customers influences on the sales amount which the classical VRPs are unable to handle these kinds of assumptions. Hence, a new mathematical model is developed for the proposed problem and for solving the problem, a simulated annealing (SA) approach is used. Then some small test problems are solved by the SA and the results are compared with obtained results from Lingo 8.0. For large-scale problems, the, Solomon's benchmark instances with additional assumption are used. The results show that the proposed SA algorithm can find good solutions in reasonable time.  相似文献   

5.
The vehicle routing problem (VRP) has been addressed in many research papers. Only a few of them take time-dependent travel speeds into consideration. Moreover, most research related to the VRP aims to minimize total travel time or travel distance. In recent years, reducing carbon emissions has become an important issue. Therefore, fuel consumption is also an important index in the VRP. In this research a model is proposed for calculating total fuel consumption for the time-dependent vehicle routing problem (TDVRP) where speed and travel times are assumed to depend on the time of travel when planning vehicle routing. In the model, the fuel consumption not only takes loading weight into consideration but also satisfies the “non-passing” property, which is ignored in most TDVRP-related research papers. Then a simulated annealing (SA) algorithm is proposed for finding the vehicle routing with the lowest total fuel consumption. An experimental evaluation of the proposed method is performed. The results show that the proposed method provides a 24.61% improvement in fuel consumption over the method based on minimizing transportation time and a 22.69% improvement over the method based on minimizing transportation distances.  相似文献   

6.
The paper addresses the problem of multi-depot vehicle routing in order to minimize the delivery time of vehicle objective. Three hybrid heuristics are presented to solve the multi-depot vehicle routing problem. Each hybrid heuristic combines elements from both constructive heuristic search and improvement techniques. The improvement techniques are deterministic, stochastic and simulated annealing (SA) methods. Experiments are run on a number of randomly generated test problems of varying depots and customer sizes. Our heuristics are shown to outperform one of the best-known existing heuristic. Statistical tests of significance are performed to substantiate the claims of improvement.  相似文献   

7.
In the truck and trailer routing problem (TTRP) the vehicle fleet consists of truck units and trailer units with some customers only accessible by truck. For that purpose trailers can be uncoupled en-route at customers where truck sub-tours are built. We discuss several variants of this specific rich vehicle routing problem (RVRP): the TTRP with and without the option of load transfer between truck and trailer as well as the requirement of time windows for delivery. We present computational experience with a simple and flexible hybrid approach which is based on local search and large neighborhood search as well as standard metaheuristic control strategies. This approach which has shown to be rather effective on several other RVRP-classes before can compete with complex state-of-the-art approaches with respect to speed and accuracy on the TTRP too.  相似文献   

8.
The Vehicle Routing and Loading Problem (VRLP) results by combining vehicle routing, possibly with time windows, and three-dimensional loading. Some packing constraints of high practical relevance, among them an unloading sequence constraint and a support constraint, are also part of the VRLP. Different formulations of the VRLP are considered and the issue is discussed under which circumstances routing and packing should be tackled as a combined task. A two-stage heuristic is presented following a “packing first, routing second” approach, i.e. the packing of goods and the routing of vehicles is done in two strictly separated stages. High quality results are achieved in short computation times for the 46 VRLP instances recently introduced by Moura and Oliveira. Moreover 120 new large benchmark instances including up to 1000 customers and 50,000 boxes are introduced and results for these instances are also reported.  相似文献   

9.
The delivery of freight from its origin to its destination is often managed through one or more intermediate facilities where storing, merging and consolidation activities are performed. This type of distribution systems is commonly called multi-echelon, where each echelon refers to one level of the distribution network. Multi-echelon distribution systems are often considered by public administrations when implementing their transportation and traffic planning strategies as well as by private companies in their distribution networks. City logistics and multi-modal transportation systems are the most cited examples of multi-echelon distribution systems. Two-echelon distribution systems are a special case of multi-echelon systems where the distribution network comprises two levels. This latter type of distribution systems has inspired an ever growing body of literature in the last few years. This paper provides an overview of two-echelon distribution systems where routes are present at both levels. We consider three classes of problems: the two-echelon location routing problem, the two-echelon vehicle routing problem, and the truck and trailer routing problem. For each class we provide an introduction and survey the foremost related papers that have appeared in the operations research literature.  相似文献   

10.
We present a green vehicle routing and scheduling problem (GVRSP) considering general time-dependent traffic conditions with the primary objective of minimizing CO2 emissions and weighted tardiness. A new mathematical formulation is proposed to describe the GVRSP with hierarchical objectives and weighted tardiness. The proposed formulation is an alternative formulation of the GVRSP in the way that a vehicle is allowed to travel an arc in multiple time periods. The schedule of a vehicle is determined based on the actual distance that the vehicle travels each arc in each time period instead of the time point when the vehicle departs from each node. Thereby, more general time dependent traffic patterns can be considered in the model. The proposed formulation is studied using various objectives functions, such as minimizing the total CO2 emissions, the total travel distance, and the total travel time. Computational results show that up to 50% reduction in CO2 emissions can be achieved with average reductions of 12% and 28% compared to distance-oriented solutions and travel-time-oriented solutions, respectively. In addition, a simulated annealing (SA) algorithm is introduced to solve large-sized problem instances. To reduce the search space, the SA algorithm searches only for vehicle routes and rough schedules, and a straightforward heuristic procedure is used to determine near-optimal detailed schedules for a given set of routes. The performance of the SA algorithm is tested on large-sized problems with up to 100 nodes and 10 time periods.  相似文献   

11.
The cumulative capacitated vehicle routing problem, which aims to minimize the total arrival time at customers, is a relatively new variant of vehicle routing problem. It can be used to model many real-world applications, e.g., the important application arisen from the humanitarian aid after a natural disaster. In this paper, an approach, called two-phase metaheuristic, is proposed to deal with this problem. This algorithm starts from a solution. At each iteration, two interdependent phases use different perturbation and local search operators for solution improvement. The effectiveness of the proposed algorithm is empirically investigated. The comparison results show that the proposed algorithm is promising. Moreover, for nine benchmark instances, the two-phase metaheuristic can find better solutions than those reported in the previous literature.  相似文献   

12.
The capacitated arc routing problem (CARP) is an important and practical problem in the OR literature. In short, the problem is to identify routes to service (e.g., pickup or deliver) demand located along the edges of a network such that the total cost of the routes is minimized. In general, a single route cannot satisfy the entire demand due to capacity constraints on the vehicles. CARP belongs to the set of NP-hard problems; consequently numerous heuristic and metaheuristic solution approaches have been developed to solve it. In this paper an “ellipse rule” based heuristic is proposed for the CARP. This approach is based on the path-scanning heuristic, one of the mostly used greedy-add heuristics for this problem. The innovation consists basically of selecting edges only inside ellipses when the vehicle is near the end of each route. This new approach was implemented and tested on three standard datasets and the solutions are compared against: (i) the original path-scanning heuristic; (ii) two other path-scanning heuristics and (iii) the three best known metaheuristics. The results indicate that the “ellipse rule” approach lead to improvements over the three path-scanning heuristics, reducing the average distance to the lower bound in the test problems by about 44%.  相似文献   

13.
This paper develops a simulated annealing heuristic based exact solution approach to solve the green vehicle routing problem (G-VRP) which extends the classical vehicle routing problem by considering a limited driving range of vehicles in conjunction with limited refueling infrastructure. The problem particularly arises for companies and agencies that employ a fleet of alternative energy powered vehicles on transportation systems for urban areas or for goods distribution. Exact algorithm is based on the branch-and-cut algorithm which combines several valid inequalities derived from the literature to improve lower bounds and introduces a heuristic algorithm based on simulated annealing to obtain upper bounds. Solution approach is evaluated in terms of the number of test instances solved to optimality, bound quality and computation time to reach the best solution of the various test problems. Computational results show that 22 of 40 instances with 20 customers can be solved optimally within reasonable computation time.  相似文献   

14.
In the heterogeneous fleet vehicle routing problem (HVRP), several different types of vehicles can be used to service the customers. The types of vehicles differ with respect to capacity, fixed cost, and variable cost. We assume that the number of vehicles of each type is fixed and equal to a constant. We must decide how to make the best use of the fixed fleet of heterogeneous vehicles.  相似文献   

15.
Nowadays genetic algorithms stand as a trend to solve NP-complete and NP-hard problems. In this paper, we present a new hybrid metaheuristic which uses parallel genetic algorithms and scatter search coupled with a decomposition-into-petals procedure for solving a class of vehicle routing and scheduling problems. The parallel genetic algorithm presented is based on the island model and its performance is evaluated for a heterogeneous fleet problem, which is considered a problem much harder to solve than the homogeneous vehicle routing problem.  相似文献   

16.
Today’s growth in the level of traffic in cities is leading to both congestion and environmental pollution (exhaust emissions and noise), as well as increased costs. Traffic congestion makes cities less pleasant places to live in, a particular problem being the negative impact on health as a result of increased exhaust emissions. In addition to these emissions, another major effect of transport which can lead to serious health problems is noise (EEA, 2013a, 2013b). There is a strong tendency in the world towards the development of “clean” motor vehicles that do not pollute the environment, that is, that do not emit harmful substances in their exhaust fumes and which create less noise without causing other types of pollution. The growth in the influence of transport on the environment has resulted in planners formulating procedures which take into account the effect of traffic on the quality of life in urban areas. This paper presents a model for the routing of light delivery vehicles by logistics operators. The model presented takes into account the fact that logistics operators have a limited number of environmentally friendly vehicles (EFV) available to them. When defining a route, EFV vehicles and environmentally unfriendly vehicles (EUV) are considered separately. For solving the problem of routing in the model, an adaptive neural network was used which was trained by a simulated annealing algorithm. An adaptive neural network was used for assessing the performance of the network branches. The input parameters of the neural network were the logistics operating costs and environmental parameters (exhaust emissions and noise) for the given vehicle route. Each of the input parameters of the neural network was thoroughly examined. The input parameters were broken down into elements which further describe the state of the environment, noise and logistics operating costs. After obtaining the performance of the network links for calculating the route for EFV and EUV vehicles a modified Clark–Wright algorithm was used. The proposed model was tested on a network which simulates the conditions in the very centre of Belgrade. All of the input parameters of the model were obtained on the basis of 40 automatic measuring stations for monitoring the air quality (SEA, 2012).  相似文献   

17.
The purpose of this paper is to determine the route of the vehicle routing problem with backhauls (VRPB), delivering new items and picking up the reused items or wastes, and resolve the inventory control decision problem simultaneously since the regular VRPB does not. Both the vehicle routing decision for delivery and pickup, and the inventory control decision affect each other and must be considered together. Hence, a mathematical model of vehicle routing problem with backhauls and inventory (VRPBI) is proposed. Since finding the optimal solution(s) for VRPBI is a NP-hard problem, this paper proposes a heuristic method, variable neighborhood tabu search (VNTS), adopting six neighborhood searching approaches to obtain the optimal solution. Moreover, this paper compares the proposed heuristic method with two other existing heuristic methods. The experimental results indicate that the proposed method is better than the two other methods in terms of average logistic cost (transportation cost and inventory cost).  相似文献   

18.
We consider a vehicle routing problem with a heterogeneous fleet of vehicles having various capacities, fixed costs and variable costs. An approach based on column generation (CG) is applied for its solution, hitherto successful only in the vehicle routing problem with time windows. A tight integer programming model is presented, the linear programming relaxation of which is solved by the CG technique. A couple of dynamic programming schemes developed for the classical vehicle routing problem are emulated with some modifications to efficiently generate feasible columns. With the tight lower bounds thereby obtained, the branch-and-bound procedure is activated to obtain an integer solution. Computational experience with the benchmark test instances confirms that our approach outperforms all the existing algorithms both in terms of the quality of solutions generated and the solution time.  相似文献   

19.
The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and complex combinatorial problem, which has received considerable attention in recent years. This problem has been addressed using many different techniques including both exact and heuristic methods. The VRPTW benchmark problems of Solomon [Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research 1987; 35(2): 254–65] have been most commonly chosen to evaluate and compare all algorithms. Results from exact methods have been improved considerably because of parallel implementations and modern branch-and-cut techniques. However, 24 out of the 56 high order instances from Solomon's original test set still remain unsolved. Additionally, in many cases a prohibitive time is needed to find the exact solution. Many of the heuristic methods developed have proved to be efficient in identifying good solutions in reasonable amounts of time. Unfortunately, whilst the research efforts based on exact methods have been focused on the total travel distance, the focus of almost all heuristic attempts has been on the number of vehicles. Consequently, it is more difficult to compare and take advantage of the strong points from each approach. This paper proposes a robust heuristic approach for the VRPTW using travel distance as the main objective through an efficient genetic algorithm and a set partitioning formulation. The tests were produced using real numbers and truncated data type, allowing a direct comparison of its results against previously published heuristic and exact methods. Furthermore, computational results show that the proposed heuristic approach outperforms all previously known and published heuristic methods in terms of the minimal travel distance.  相似文献   

20.
School bus routing problems, combining bus stop selection and bus route generation, look simultaneously for a set of bus stops to pick up students from among a group of potential locations, and for bus routes to visit the selected stops and carry the students to their school. These problems, classified as Location-Routing problems, are of interest in densely populated urban areas.This article introduces a generalization of the vehicle routing problem called the multi-vehicle traveling purchaser problem, modeling a family of routing problems combining stop selection and bus route generation. It discusses a Mixed Integer Programming formulation extending previous studies on the classical single vehicle traveling purchaser problem. The proposed model is based on a single commodity flow formulation combining continuous variables with binary variables by means of coupling constraints. Additional valid inequalities are proposed with the purpose of strengthening its Linear Programming relaxation. These valid inequalities are obtained by projecting out the flow variables.We develop a branch-and-cut algorithm that makes use of the proposed model and valid inequalities. This cutting plane algorithm is implemented and tested on a large family of symmetric and asymmetric instances derived from randomly generated problems, showing the usefulness of the proposed valid inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号