首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
We study the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of continuous functionsf(x, y), 2π-periodic in each variable. The results are given in terms of the modulus of symmetric smoothness defined by $$\begin{gathered} \omega _2 \left( {f,\delta _1 ,\delta _2 } \right) = \mathop {\sup }\limits_{x,y} \mathop {\sup }\limits_{\left| u \right| \leqslant \delta _1 ,\left| v \right| \leqslant \delta _2 } \left| {f\left( {x + u,y + v} \right)} \right. + f\left( {x + u,y - v} \right) + f\left( {x - u,y + v} \right) \hfill \\ + \left. {f\left( {x - u,y - v} \right) + 4f\left( {x,y} \right)} \right| for \delta _1 ,\delta _2 \geqslant 0. \hfill \\ \end{gathered} $$ As a special case we obtain the rate of uniform approximation to functionsf(x,y) in Lip({α, β}), the Lipschitz class, and inZ({α, β}), the Zygmund class of ordersα andβ, 0<α,β ≤ l, as well as the rate of uniform approximation to the conjugate functions \(\tilde f^{(1,0)} (x,y), \tilde f^{(0,1)} (x,y)\) and \(\tilde f^{(1,1)} (x,y)\) .  相似文献   

2.
3.
For the equation of mixed elliptic-hyperbolic type $u_{xx} + (\operatorname{sgn} y)u_{yy} - b^2 u = f(x)$ in a rectangular domainD = {(x, y) | 0 < x < 1, ?α < y < β}, where α, β, and b are given positive numbers, we study the problem with boundary conditions $\begin{gathered} u(0,y) = u(1,y) = 0, - \alpha \leqslant y \leqslant \beta , \hfill \\ u(x,\beta ) = \phi (x),u(x,\alpha ) = \psi (x),u_y (x, - \alpha ) = g(x),0 \leqslant x \leqslant 1. \hfill \\ \end{gathered} $ . We establish a criterion for the uniqueness of the solution, which is constructed as the sum of the series in eigenfunctions of the corresponding eigenvalue problem and prove the stability of the solution.  相似文献   

4.
In this note we are concerned with numerical solutions to Dirichlet problem $$[\phi(u')]' =f(x) \quad \mbox{in} [\alpha, \beta]; \quad u(\alpha)=A, \; u(\beta)=B, $$ where \(\phi :(-\eta , \eta ) \to \mathbb {R}\) \((\eta <+ \infty )\) is an increasing diffeomorphism with \(\phi '(y)\geq d >0\) for all \(y\in (-\eta , \eta )\) . The obtained algorithm combines the shooting method with Euler’s method and it is convergent whenever the problem is solvable. We provide numerical experiments confirming the theoretical aspects.  相似文献   

5.
The final step in the mathematical solution of many problems in mathematical physics and engineering is the solution of a linear, two-point boundary-value problem such as $$\begin{gathered} \ddot u - q(t)u = - g(t), 0< t< x \hfill \\ (0) = 0, \dot u(x) = 0 \hfill \\ \end{gathered} $$ Such problems frequently arise in a variational context. In terms of the Green's functionG, the solution is $$u(t) = \int_0^x {G(t, y, x)g(y) dy} $$ It is shown that the Green's function may be represented in the form $$G(t,y,x) = m(t,y) - \int_y^x {q(s)m(t, s) m(y, s)} ds, 0< t< y< x$$ wherem satisfies the Fredholm integral equation $$m(t,x) = k(t,x) - \int_0^x k (t,y) q(y) m(y, x) dy, 0< t< x$$ and the kernelk is $$k(t, y) = min(t, y)$$   相似文献   

6.
Пустьf(x) — интегрируемая 2π-периодическая функция, aω(f,δ) иs n(x)=sn(f, x). соответственно, модуль непрерывности иn-ая сумма Фурье этой функции. В настоящей работе, продолжающей исследования Г. Фрейда, Л. Лейндлера—E. M. Никищина, И. Сабадоша и К. И. Осколкова, доказывается следующая теорема.Если Ω(u) — выпуклая или вогнутая непрерывная функция и если (1) 1 $$\left\| {\left. {\sum\limits_{k = 1}^\infty \Omega (|S_k (x) - f(x)|)} \right\|_C } \right.$$ то 1 $$\omega (f;\delta ) = O\left( {\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} } \right),$$ где ¯Ω(v) —функция, обратная к Ω(и). При этом существует функция f0(х), удовлетворяющая условию (1), для которой $$\omega (f;\delta ) = c\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} (c > 0).$$ ЕслиΩ(u)— вогнутая функция, то интеграл \(\int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} \) можно заменить на \(\int\limits_{\bar \Omega (\delta )}^1 {\frac{{du}}{{\Omega (u)}}.} \) . Отсюда вытекает, что еслиΩ(u) — функция типа модуля непрерывности, то для того, чтобы (1) всегда влекло принадлежность f(x) классу Lip 1, необходимо и достаточно условие \(\int\limits_0^1 {\frac{{du}}{{\Omega (u)}}}< \infty .\)   相似文献   

7.
Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions $$\left\{ \begin{array}{lll} u_{tt} ={\rm div} (\mathcal{A} \nabla u)-\gamma (x,u_t), && \quad {\rm in} \; (0, \infty) \times \Omega,\\ u(0, \cdot)=f, \, u_t(0,\cdot)=g, && \quad {\rm in}\; \Omega, \\ u_{tt} + \beta \partial^ \mathcal{A}_\nu u+c(x)u+ \delta (x,u_t)-q \beta \Lambda_{\rm LB} u=0,&& \quad {\rm on} \;(0, \infty ) \times \partial \Omega . \end{array}\right. $$ for t ≥  0 and ${x \in \Omega \subset \mathbb{R}^N}$ ; the last equation holds on the boundary . Here ${\mathcal{A}= \{a_{ij}(x)\}_{ij}}$ is a real, hermitian, uniformly positive definite N × N matrix; ${\beta \in C(\partial \Omega)}$ , with β > 0; ${\gamma:\Omega \times \mathbb{R} \to \mathbb{R}; \delta:\partial \Omega \times \mathbb{R} \to \mathbb{R}; \,c:\partial \Omega \to \mathbb{R}; \, q \ge 0, \Lambda_{\rm LB}}$ is the Laplace–Beltrami operator on , and ${\partial^\mathcal{A}_\nu u}$ is the conormal derivative of u with respect to ${\mathcal{A}}$ ; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients ${\mathcal{A},\,\beta,\,\gamma,\,\delta,\,c,\,q}$ , and the initial conditions fg. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.  相似文献   

8.
We prove the following inequalities involving Euler’s beta function. (i) Let α and β be real numbers. The inequalities $\left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\alpha \leqslant \frac{{B(x,x)^{z - y} B(z,z)^{y - x} }} {{B(y,y)^{z - x} }} \leqslant \left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\beta $ hold for all x, y, z with 0 < xyz if and only if α ≤ 1/2 and β ≥ 1. (ii) Let a and b be non-negative real numbers. For all positive real numbers x and y we have $\delta (a,b) \leqslant \frac{{x^a B(x + b,y) + y^a B(x,y + b)}} {{(x + y)^a B(x,y)}} \leqslant \Delta (a,b) $ with the best possible bounds $\delta (a,b) = \min \{ 2^{ - a} ,2^{1 - a - b} \} and\Delta (a,b) = \max \{ 1,2^{1 - a - b} \} . $ .  相似文献   

9.
We study the non-local eigenvalue problem $$\begin{aligned} 2\, \int \limits _{\mathbb{R }^n}\frac{|u(y)-u(x)|^{p-2}\bigl (u(y)-u(x)\bigr )}{|y-x|^{\alpha p}}\,dy +\lambda |u(x)|^{p-2}u(x)=0 \end{aligned}$$ for large values of $p$ and derive the limit equation as $p\rightarrow \infty $ . Its viscosity solutions have many interesting properties and the eigenvalues exhibit a strange behaviour.  相似文献   

10.
Let f(x) be a smooth function on the circle S1, x mod 1, \(\smallint _{S^1 } f(x)dx = 0\) , α be an irrational number, and qn be the denominators of convergents of continued fractions. In this note a classification of ω-limit sets for the cylindrical cascade $$T:(x,y) \to (x + \alpha , y + f(x)),$$ x ε S1, y ε R, is obtained. Criteria for the solvability of the equation g(x +α) — g(x)=f (x) are found. Estimates for the speed of decrease of the function $$h_{q_n } (x) = \sum _{i = 0}^{q_n - 1} f(x + i\alpha )$$ as n → ∞ are obtained.  相似文献   

11.
The purpose of this paper is to bring a new light on the state-dependent Hamilton–Jacobi equation and its connection with the Hopf–Lax formula in the framework of a Carnot group $(\mathbf G ,\circ ).$ The equation we shall consider is of the form $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{t}+ \Psi (X_{1}u, \ldots , X_{m}u)=0\qquad &{}(x,t)\in \mathbf G \times (0,\infty ) \\ {u}(x,0)=g(x)&{}x\in \mathbf G , \end{array} \right. \end{aligned}$$ where $X_{1},\ldots , X_{m}$ are a basis of the first layer of the Lie algebra of the group $\mathbf G ,$ and $\Psi : \mathbb{R }^{m} \rightarrow \mathbb{R }$ is a superlinear, convex function. The main result shows that the unique viscosity solution of the Hamilton–Jacobi equation can be given by the Hopf–Lax formula $$\begin{aligned} u(x,t) = \inf _{y\in \mathbf G }\left\{ t \Psi ^\mathbf{G }\left( \delta _{\frac{1}{t}}(y^{-1}\circ x)\right) + g(y) \right\} , \end{aligned}$$ where $\Psi ^\mathbf{G }:\mathbf G \rightarrow \mathbb{R }$ is the $\mathbf G $ -Legendre–Fenchel transform of $\Psi ,$ defined by a control theoretical approach. We recover, as special cases, some known results like the classical Hopf–Lax formula in the Euclidean spaces $\mathbb{R }^n,$ showing that $\Psi ^{\mathbb{R }^n}$ is the Legendre–Fenchel transform $\Psi ^*$ of $\Psi ;$ moreover, we recover the result by Manfredi and Stroffolini in the Heisenberg group for particular Hamiltonian function $\Psi .$ In this paper we follow an optimal control problem approach and we obtain several properties for the value functions $u$ and $\Psi ^\mathbf G .$   相似文献   

12.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

13.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

14.
This paper is concerned with estimations of solutions of the Sturm–Liouville equation $$\big(p(x)y'(x)\big)'+\Big(\mu^2 -2i\mu d(x)-q(x)\Big)\rho(x)y(x)=0, \ \ x\in[0,1],$$ ( p ( x ) y ' ( x ) ) ' + ( μ 2 - 2 i μ d ( x ) - q ( x ) ) ρ ( x ) y ( x ) = 0 , x ∈ [ 0 , 1 ] , where ${\mu\in\mathbb{C}}$ μ ∈ C is a spectral parameter. We assume that the strictly positive function ${\rho\in L_{\infty}[0,1]}$ ρ ∈ L ∞ [ 0 , 1 ] is of bounded variation, ${p\in W^1_1[0,1]}$ p ∈ W 1 1 [ 0 , 1 ] is also strictly positive, while ${d\in L_1[0,1]}$ d ∈ L 1 [ 0 , 1 ] and ${q\in L_1[0,1]}$ q ∈ L 1 [ 0 , 1 ] are real functions. The main result states that for any r > 0 there exists a constant c r such that for any solution y of the Sturm–Liouville equation with μ satisfying ${|{\rm Im}\, \mu|\leq r}$ | Im μ | ≤ r , the inequality ${\|y(\cdot,\mu)\|_C\leq c_r\|y(\cdot,\mu)\|_{L_1}}$ ∥ y ( · , μ ) ∥ C ≤ c r ∥ y ( · , μ ) ∥ L 1 is true. We apply our results to a problem of vibrations of an inhomogeneous string of length one with damping, modulus of elasticity and potential, rewritten in an operator form. As a consequence, we obtain that the operator acting on a certain energy Hilbert space is the generator of an exponentially stable C 0-semigroup.  相似文献   

15.
16.
Let α and s be real numbers satisfying 0<s<α<n. We are concerned with the integral equation $$u(x)=\int_{R^n}\frac{u^p(y)}{|x-y|^{n-\alpha}|y|^s}dy, $$ where \(\frac{n-s}{n-\alpha}< p< \alpha^{*}(s)-1\) with \(\alpha^{*}(s)=\frac{2(n-s)}{n-\alpha}\) . We prove the nonexistence of positive solutions for the equation and establish the equivalence between the above integral equation and the following partial differential equation $$\begin{aligned} (-\Delta)^{\frac{\alpha}{2}}u(x)=|x|^{-s}u^p. \end{aligned}$$   相似文献   

17.
The functional equation $$ f\left(x\right)g\left(y\right)=p\left(x+y\right)q\left(\frac{x}{y} \right) $$ is investigated for almost all ${\left(x,\,y\right)\in\mathbb{R}^{2}_{+}}$ and for the measurable functions ${f,\,g,\,p,\,q:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}}$ . This equation is related to the Lukács characterization of gamma distribution.  相似文献   

18.
We consider the following nonlinear Schrödinger equation $$\begin{aligned} \left\{ \begin{array}{l} \Delta u-(1+\delta V)u+f(u)=0 \ \ \hbox { in }\mathbb {R}^N,\\ u>0 \ \hbox {in} \ \mathbb {R}^N, u\in H^1(\mathbb {R}^N) \end{array} \right. \end{aligned}$$ where \(V\) is a continuous potential and \( f(u)\) is a nonlinearity satisfying some decay condition and some non-degeneracy condition, respectively. Using localized energy method, we prove that there exists a \(\delta _0\) such that for \(0<\delta <\delta _0\) , the above problem has infinitely many positive solutions. This generalizes and gives a new proof of the results by Cerami et al. (Comm. Pure Appl. Math. 66, 372–413, 2013). The new techniques allow us to establish the existence of infinitely many positive bound states for elliptic systems.  相似文献   

19.
We consider a class of semilinear elliptic equations of the form $$ \label{eq:abs}-\Delta u(x,y,z)+a(x)W'(u(x,y,z))=0,\quad (x,y,z)\in\mathbb {R}^{3},$$ where ${a:\mathbb {R} \to \mathbb {R}}$ is a periodic, positive, even function and, in the simplest case, ${W : \mathbb {R} \to \mathbb {R}}$ is a double well even potential. Under non degeneracy conditions on the set of minimal solutions to the one dimensional heteroclinic problem $$-\ddot q(x)+a(x)W^{\prime}(q(x))=0,\ x\in\mathbb {R},\quad q(x)\to\pm1\,{\rm as}\, x\to \pm\infty,$$ we show, via variational methods the existence of infinitely many geometrically distinct solutions u of (0.1) verifying u(x, y, z) → ± 1 as x → ± ∞ uniformly with respect to ${(y, z) \in \mathbb {R}^{2}}$ and such that ${\partial_{y}u \not \equiv0, \partial_{z}u \not\equiv 0}$ in ${\mathbb {R}^{3}}$ .  相似文献   

20.
The Cauchy problem for the Laplace operator $$\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$$ is modified by replacing the Laplace equation by an asymptotic estimate of the form $$\begin{gathered} \Delta u(x,y) = 0, \hfill \\ u(x,0) = f(x),\frac{{\partial u}}{{\partial y}}(x,0) = g(x) \hfill \\ \end{gathered} $$ with a given majoranth, satisfyingh(+0)=0. Thisasymptotic Cauchy problem only requires that the Laplacian decay to zero at the initial submanifold. It turns out that this problem has a solution for smooth enough Cauchy dataf, g, and this smoothness is strictly controlled byh. This gives a new approach to the study of smooth function spaces and harmonic functions with growth restrictions. As an application, a Levinson-type normality theorem for harmonic functions is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号