共查询到19条相似文献,搜索用时 78 毫秒
1.
针对反延时难以实现的状况,提出了用延时电路并联实现反延时的方法,并用极大似然法和经验Bayes法讨论了系统可靠性评估问题,给出了系统失效率、可靠度和平均寿命等可靠性指标的估计。利用计算机Monte-Carlo随机模拟的方法对可靠性指标的Bayes估计和极大似然估计进行比较,结果表明,经验Bayes估计优于极大似然估计。 相似文献
2.
3.
4.
基于模糊极大似然估计聚类的点云数据分块 总被引:1,自引:0,他引:1
对散乱点云数据采用微切平面法进行法矢估计,对法矢方向进行全局协调性调整。采用稳定性较好的二次曲面拟合法估算点云数据的高斯曲率和平均曲率。将点的坐标、法矢和曲率合并为八维特征向量,通过模糊极大似然估计聚类技术,将具有类似几何特征的向量聚为一类,从而实现点云数据的分块。实验证明该方法有效。 相似文献
5.
研究了一类带有某种隐含的性能退化过程的动态系统的实时可靠性预测问题。在初始性能变量值不确定的情况下,首先基于粒子滤波算法和迭代极大似然估计方法,利用系统的输出信息辨识了性能退化轨道函数中的未知参数,并实时估计性能变量值。然后根据性能退化过程辨识结果实时地预测系统在未来一段时间内的可靠性指标。基于三容水箱的仿真实验结果验证了方法的有效性。 相似文献
6.
量子态估计是量子计算以及量子调控的基础,一般分为量子态层析,即对未知量子态(或过程的初态)进行估计,以及量子滤波,即对量子态进行实时的估计.本文首先介绍了近年来量子态层析技术新的进展,内容包括极大似然方法,压缩感知方法和线性回归方法,并分析了它们的适用范围及各自的优缺点.进一步,基于量子计算的成熟载体超导电路电动力学系统,介绍了基于连续弱测量对量子态进行实时估计的贝叶斯方法,并分析了贝叶斯估计的适用情形.进一步,通过仿真实现了量子贝叶斯估计,可以很容易发现贝叶斯方法能够精确地实时追踪量子态的演化. 相似文献
7.
8.
为解决现有数据存储系统存在速度较低、容量较小且运行不稳定的问题,设计了无线通信链路数据的分布式融合存储系统,分析了无线通信链路数据特征,并构建了系统硬件与软件框架.系统硬件方面优化设计了电子硬盘、多路选通开关、控制电路和桥接电路;系统软件为设计的核心部分,使用最小二乘法配准无线链路数据的时间参数,校准链路数据的坐标系空... 相似文献
9.
针对仿射结构形式在丢失数据下的条件极大似然辨识问题, 首先引入交换矩阵将原随机矢量分解成观测和丢失部分; 然后确定出观测数据在丢失数据下的条件均值和条件方差, 以此建立条件似然函数; 进而从理论上给出了条件极大似然函数关于未知参数矢量、未知白噪声方差值和丢失数据的求导公式, 并从工程上给出一种可分离的优化算法; 最后通过仿真算例验证了该辨识方法的有效性. 相似文献
10.
旨在预测风险系数,我们对沪市10个行业的β系数的时变行为采用随机游走(RW)模型,在随机游走模型的回归变量前引进了未知参数,仿真预测的结果表明,引进未知系数后的模型,其绝对预测误差MAE和均方预测误差MSE都比引进未知系数前的模型更精确,改后的模型更适合描述沪市行业风险系数的时变行为。仿真过程是通过卡尔曼滤波的递推过程获取新息及其协方差阵,得到似然函数,从而推进参数估计。将估计的结果返回卡尔曼滤波更新过程,易得观测变量的预测值。 相似文献
11.
Christopher A. Swann 《Computational Economics》2002,19(2):145-178
The computational difficulty of econometric problems has increased dramatically in recent years as econometricians examine more complicated models and utilize more sophisticated estimation techniques. Many problems in econometrics are `embarrassingly parallel' and can take advantage of parallel computing to reduce the wall clock time it takes to solve a problem. In this paper I demonstrate a method that can be used to solve a maximum likelihood problem using the MPI message passing library. The econometric problem is a simple multinomial logit model that does not require parallel computing but illustrates many of the problems one would confront when estimating more complicated models. 相似文献
12.
期望最大算法及其应用(1) 总被引:2,自引:1,他引:1
EM算法是实现极大似然估计的一种有效方法,主要用于非完全数据的参数估计。它通过假设隐变量的存在,极大地简化了似然方程;对于一些特殊的参数估计问题,利用EM算法也很容易实现。而极大似然估计是一种常用的参数估计方法,EM算法使其应用更加广泛。文章从应用者的角度出发,内容是自包含的。 相似文献
13.
The ‘compound Poisson’ (CP) software reliability model was proposed previously by the first named author for time-between-failure data in terms of CPU seconds, using the ‘maximum likelihood estimation’ (MLE) method to estimate unknown parameters; hence, CPMLE. However, another parameter estimation technique is proposed under ‘nonlinear regression analysis’ (NLR) for the compound Poisson reliability model, giving rise to the name CPNLR. It is observed that the CP model, with different parameter estimation methods, produces equally satisfactory or more favourable results as compared to the Musa–Okumoto (M–O) model, particularly in the event of grouped or clustered (clumped) software failure data. The sampling unit may be a week, day or month within which the failures are clumped, as the error recording facilities dictate in a software testing environment. The proposed CPNLR and CPMLE yield comparatively more favourable results for certain software failure data structures where the frequency distribution of the cluster (clump) size of the software failures per week displays a negative exponential behaviour. Average relative error (ARE), mean squared error (MSE) and average Kolmogorov–Smirnov (K–S Av.Dn) statistics are used as measures of forecast quality for the proposed and competing parameter-estimation techniques in predicting the number of remaining future failures expected to occur until a target stopping time. Comparisons on five different simulated data sets that contain weekly recorded software failures are made to emphasize the advantages and disadvantages of the competing methods by means of the chronological prediction plots around the true target value and zero per cent relative error line. The proposed generalized compound Poisson (MLE and NLR) methods consistently produce more favourable predictions for those software failure data with negative exponential frequency distribution of the failure clump size versus number of weeks. Otherwise, the popularly used competing M–O log-Poisson model is a better fit for those data with a uniform clump size distribution to recognize the log-Poisson effect while the logarithm of the Poisson equation is a constant, hence uniform. The software analyst is urged to perform exploratory data analysis to recognize the nature of the software failure data before favouring a particular reliability estimation method. © 1997 by John Wiley & Sons, Ltd. 相似文献
14.
为了克服接收信号强度测量误差对无线传感嚣网络(WSN)节点自身定位精度的影响.在对极大似然估计定位算法和接收信号强度指示(RSSI)模型分析的基础上,定义了个体差异差分系数、距离差分系数和距离差分定位方程,把离目标节点最近的信标节点作为参考节点对基于RSSI的测距进行差分修正,并将测距差分修正和极大似然估计相结合提出了一种测距差分修正极大似然估计定位算法.算法通过RSSI进行测距,无需增加额外硬件开销,容易实现.定位精度可达2.5 m以下,适合于处理能力和能量有限的WSN节点定位. 相似文献
15.
中央BIT软件是专门针对雷达系统研制的在线健康管理软件;应对工程应用中的实时性要求,采用“多任务并行”思想进行内核数据处理流程设计;简要介绍了雷达中央BIT软件的功能和技术优势;描述了软件中定义的健康数据包的组织结构以及任务处理流程;围绕雷达健康数据包的并行处理技术,重点阐述了软件实现中的多任务数据管道、模块线程以及线程间的数据传递机制;提出了多任务并行处理的时间效用分析方法,以及针对实时性瓶颈的解决措施;工程实例分析结果表明该方法能够有效评价并指导并行处理方案设计;所提出的并行处理技术和分析方法,可为Windows平台上同类软件的研制提供借鉴. 相似文献
16.
介绍了核独立分量分析(ICA)的基本原理和算法,并将其用于对电流传感器输出的混合信号进行分离,通过比较分离出的单频测试信号输入前后的相位差,来标定传感器本身的相位差对其检测对象的影响。此外,还采用最大似然法对核ICA的分离效果进行评价。实验证明:在输入信号的信噪比为18.73dB的情况下,核ICA分离出的信号与源信号相位差在0.002 rad以内,达到了实际应用中所要求的误差范围。 相似文献
17.
Reza HoseinNezhad Behzad Moshiri Mohammad Reza Asharif 《Journal of Intelligent and Robotic Systems》2003,36(1):89-108
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods, usually require explicit measurement of actual motion of the robot. Some recent methods, use the smart encoder trailer or long range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manual measurement is necessary in the case of the robots that are not equipped with long range detectors or such smart encoder trailer. Our proposed approach, uses an environment map that is created by fusion of proximity data, in order to calibrate the odometry error automatically. In the new approach, the systematic part of the error is adaptively estimated and compensated by an efficient and incremental maximum likelihood algorithm. Actually, environment map data are fused with the odometry and current sensory data in order to acquire the maximum likelihood estimation. The advantages of the proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the amount of pose estimation error is reduced by a percentage of more than 80%. 相似文献
18.