首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The grid-to-rod fretting wear-induced fuel rod failure observed in PWRs may be caused by excessive fluid-induced vibration and inadequate fuel rod support by the spacer grid spring. In order to simulate in-reactor grid-to-rod fretting wear behaviors, the grid-to-rod fuel rod supporting conditions as a function of time were predicted by taking into account cladding creep rate, initial spacer grid spring deflection, spacer grid spring force relaxation, etc. Based on these grid-to-rod supporting conditions, the fuel rod vibration modes and natural frequencies were calculated with the help of the ANSYS code, while the fuel rod vibration amplitudes were estimated by the Paidoussis’ empirical formula. With these vibration characteristics that depend upon the grid-to-rod supporting conditions, the in-reactor fretting wear axial profile observed on the fuel rod surface are found to be simulated quite well. In addition, key design guidelines for the fuel assembly and the spacer grid are proposed to minimize the grid-to-rod fretting wear that may be utilized to develop an advanced fuel design against fretting wear.  相似文献   

2.
The burnup-dependent grid-to-rod gap combined with the fluid-induced vibration may generate grid-to-rod fretting wear-induced fuel failure for some fuel assemblies in a certain burnup range. The systematic grid-to-rod fretting wear-induced fuel failure occurred at the 16×16 Korean Optimized Fuel Assembly loaded in the 2-loop Westinghouse type plant in Korea. Prior to various tests and some measurements for investigating its root causes, they were assumed to be self-excited fuel assembly vibration caused by hydraulic-unbalanced mixing vane design, excessive cross-flow between fuel assemblies during the transition core, or relatively large grid-to-rod gap formation during in-reactor irradiation that may be caused by excessive initial spring force loss of fresh fuel during a fuel rod loading process and/or a fuel assembly transport to a plant and by excessive cladding creep-down. A wide spectrum of tests and some measurements were performed to find out root cause(s) of the grid-to-rod fretting wear-induced fuel failure. Based on these tests and measurements, it is concluded that the self-excited fuel assembly vibration is the primary root cause, while excessive initial spring force loss during the fuel rod loading process is the second major root cause.  相似文献   

3.
The advanced PWR fuel for the OPR1000s in Korea, PLUS7, has been developed to enhance thermal performance, high burnup capability and fuel reliability against grid-to-rod fretting wear and debris. The outstanding design features of PLUS7 include mixing vane mid-grids for increasing thermal performance and minimizing vibration-induced fretting wear, optimized fuel dimensions and advanced zirconium alloys for high burnup capability of 72,000 MWD/MTU, and an optimized fuel rod diameter for reducing pressure drop and improving neutron economy. The fuel assembly and its components performances have been verified through a wide spectrum of mechanical, thermal hydraulic, vibration and fretting wear tests. Based on the verification test results and the evaluations with the help of the KNF design code system, it is found that the PLUS7 fuel will maintain its integrity up to the envisaged burnup of 72,000 MWD/MTU. In addition, the PLUS7 fuel performances were evaluated to be considerably improved in comparison with the current fuel used in the OPR1000s.  相似文献   

4.
The most limiting design criteria for high Burnup PWR fuel are known to be rod internal pressure and cladding oxidation. Some fuel vendors have been increasing the design margin of rod internal pressure by increasing fuel rod plenum volume or optimizing fuel pellet grain size. In this study, a sophisticated statistical methodology that employs the response surface method and Monte Carlo simulation has been proposed to increase the design margin of rod internal pressure and subsequently a simplified statistical methodology has been developed to simplify the sophisticated statistical methodology. The simplified statistical methodology utilizes the system moment method combined with a deterministic approach for calculating a maximum variance of rod internal pressure. This simplified statistical methodology may be more efficient in the reload core fuel rod performance analyses than the sophisticated statistical methodology since the former eliminates numerous calculations needed for the evaluation of power history-dependent variances. It is found that this simplified methodology also generates more conservative rod internal pressure than the typical statistical methodology.  相似文献   

5.
The burnup-dependent grid-to-rod gap combined with the fluid-induced vibration may generate grid-to-rod fretting wear-induced fuel failure for some fuel assemblies in a certain burnup range. The grid-to-rod gap is dependent on initial spacer grid spring force, spring force relaxation and cladding creepdown. It is found that the initial spring force is reduced during the fuel rod loading into the fuel assembly skeleton. The extent of the initial spring force loss is strongly dependent on the fuel rod loading speed. Based on the initial spring force loss data obtained from two kinds of fuel rod loading speeds of 0.18 and 0.33 m/s, it can be said that the higher rod loading speed generates the larger initial spring force loss. This is because the higher speed generates the larger overshooting of spring deflection during the fuel rod loading. The extent of overshooting may be affected by axial misalignment of SG cells, spring-to-fuel rod end plug contact angle, ballooning of FR end plug weld region and the extent of gravity-induced FR bowing, combining with the fuel rod loading speed. The rod loading speed of 0.33 m/s is found to produce some spacer grid cells less than a minimum initial spring force requirement of 12 N against the grid-to-rod fretting wear-induced failure. In order to produce initial spacer grid spring force meeting the minimum spring force requirement, it is recommended that the lower rod loading speed be used, combined with axially aligned spacer grid cells and lower contact angle of spring-to-fuel rod end plug.  相似文献   

6.
The aim of this paper is to provide an overview of the existing wire-wrapped fuel bundle friction factor/pressure drop correlations and to qualitatively evaluate which of the existing friction factor correlations are the best in retracing the results of a large set of the experimental data available on wire-wrapped fuel assemblies tested under different coolant conditions.  相似文献   

7.
To estimate the success criteria of an operator's action time for a probabilistic safety/risk assessment (PSA/PRA) of a nuclear power plant, the information from a safety analysis report (SAR) and/or that by using a simplified simulation code such as the MAAP code has been used in a conventional PSA. However, the information from these is often too conservative to perform a realistic PSA for a risk-informed application. To reduce the undue conservatism, the use of a best-estimate thermal hydraulic code has become an essential issue in the latest PSA and it is now recognized as a suitable tool. In the same context, the ‘ASME PRA standard’ also recommends the use of a best-estimate code to improve the quality of a PSA. In Korea, a platform to use a best-estimate thermal hydraulic code called the MARS code has been developed for the PSA of the Korea standard nuclear power plant (KSNP). This study has proposed an estimation method for an operator's action time by using the MARS platform. The typical example case is a small break loss of coolant accident without the high pressure safety injection system, which is one of the most important accident sequences in the PSA of the KSNP. Under the given accident sequence, the operator has to perform a recovery action known as a fast cooldown operation. This study focuses on two aspects regarding an operator's action; one is how they can operate it under some restrictions; the other is how much time is available to mitigate this accident sequence. To assess these aspects, this study considered: (1) the operator's action model and (2) the starting time of the operation. To show an effect due to an operator's action, three kinds of control models (the best-fitting, the conservative, and the proportional-integral) have been assessed. This study shows that the developed method and the platform are useful tools for this type of problem and they can provide a valuable insight related to an operator's actions.  相似文献   

8.
9.
This paper presents an overview of instrumentation and control (I&C) systems of a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. Yonggwang unit 3, which was constructed as a basis model for a Korea standard nuclear power plant (KSNP), is selected as an example for the presentation. This overview is derived from analyzing the I&C systems based on a top-down approach. The I&C systems consist of 30 systems. The 183 I&C cabinets are also analyzed and mapped to the systems. The overview is focused on an interface between the systems and the cabinets. This information will be used to understand the implementation of the I&C systems and to group the systems for an upgrade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号