首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two fundamental phenomena are significant when a shock pressure interacts with the large scale coarse mixing state. One is an intensive flow and the other is the surface area enhancement due to the disintegration of the hot drops. The effects of these phenomena on the transient heat transfer and behavior of vapor film under a shock pressure are investigated. Transient heat transfer of film boiling from an electrically heated platinum ribbon 2.5 mm wide and 0.15 mm thick was measured immediately after passage of a shock pressure from 0.1 to 0.7 MPa. The heater was set horizontally in a vertical shock tube which was filled with vapor liquid bubbly mixture and kept initially in the film boiling state. That is, the heater corresponds to a typical hot drop and the bubbles around it correspond to the coarse mixture around the drop. The liquid was Freon-113 with an initial void fraction in the range from 0 to 3%. When the shock wave arrives at the heater, intensive transient flow occurs due to collapse of bubbles around the heater. First, the effects of the initial void fraction, the intensity of the shock and the heated wall temperature on the transient heat fluxes and collapse of the vapor film were investigated experimentally and analytically under the shock pressure. Compared with a heated wall in the liquid alone, the transient heat flux at the heated wall increases and the collapse of the vapor film becomes easier in the bubbly mixture due to the transient flow. Effects of surface enhancement during the fragmentation process on the heat transfer rate and transient behavior of vapor film are investigated analytically by application of the newly proposed surface stretch model. It is made clear when the surface area is increasing, the vapor film is apt to collapse and the transient heat transfer is enhanced by the surface stretch.  相似文献   

2.
Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer and surfactant have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2 and 9.5 mm-diameter were tested in the polymer solutions of various concentrations and pool temperatures from 30°C to its boiling point. The minimum film boiling temperature in 30°C liquid rapidly decreased from over 700°C for pure water to about 150°C as the polymer concentration was increased up to 300 ppm for a 22.2 mm sphere, and it decreased to 350°C for a 9.5 mm sphere. This trend is observed consistently in the heated pool up to its boiling temperature, while the tests with surfactant solutions do not show an appreciable reduction in the minimum film boiling temperature. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25°C. It was observed that in 50 ppm solutions more mass fragmented than in pure water, but it produced weaker explosion pressures. The explosion was completely suppressed in 300 ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7 mm were shown to be almost identical regardless of the polymer concentrations.  相似文献   

3.
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.  相似文献   

4.
An experimental study of transient film boiling was conducted, with different coolant velocities, on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a cylinder in cross flow and two flat plates with different lengths. A frame by frame photographic study on the nature of the vapour/liquid interface and the collapse modes has revealed a new mode for film collapse, in which an explosive liquid–solid contact is followed by film re-formation and the motion of a quench front over the hot surface. Steady state tests were carried out on a plate similar to the short plate used in the transient experiments and the heat transfer, film stability and collapse results are compared with those of the transient investigation.Heat transfer coefficients and heat fluxes during film boiling were found essentially to depend on specimen temperature and water subcooling. In contrast, the influences on heat transfer of specimen size and water velocity were relatively small for the ranges studied. A theoretical model predicted heat transfer coefficients to within 10% of experimental values for water subcoolings above 10 K and within 30% in all cases.  相似文献   

5.
6.
在熔融物与冷却剂相互作用(FCI)过程中,熔滴的水力学碎化对于后续是否产生蒸汽爆炸以及爆炸的强弱程度有着重要影响。传统的熔滴水力学碎化数值研究通常只考虑液液直接接触的两相系统;而堆芯熔化后,熔融物温度在2 500K以上,熔融物周围会迅速产生汽膜,导致熔滴和冷却剂之间的传热和阻力特性发生改变。本文基于PLIC-VOF(piecewise linear interface construction-volume of fluid)界面跟踪方法对有汽膜存在的三相系统中的熔滴水力学碎化过程进行了数值研究,通过分析熔滴在有无汽膜和不同边界速度触发情况下碎化过程中的界面特性,发现熔滴碎化程度随Weber数的增加而加剧,汽膜对熔滴的水力学碎化存在一定的抑制作用。  相似文献   

7.
For providing background information on the possible vapor explosion in the event of a core disruptive accident of LMFBRs, an experiment was conducted on the film boiling characteristics of liquid metal potassium in association with the Leidenfrost phenomenon. In a steel container filled with Ar gas, K droplets were put on a joule-heated plate of 316-SS or Ta. The behaviors of droplet were observed by a camera and a color VTR through viewports. The experimental conditions were the Ar pressure 1 bar, the initial K temperature 350~760°C, and the plate temperature 900~1,250°C for 316-SS and 1,100~1,600°C for Ta.

Stable film boiling known as Leidenfrost phenomenon was observed for a high temperature condition of the plate, whereas an instantaneous break-up of droplet with extensive vaporization occurred for a low temperature. The heat transfer characteristics of film and transition boiling regions were obtained by estimating the heat flux from the volumetric reducing rate of droplet due to vaporization. The results in the film boiling region showed an appreciably good agreement with the prediction based on Bromley's expression combined with the theory of Baumeister et al. The minimum film boiling temperature and heat flux were found to be about 1,300°C and 15 W/cm2, respectively, for a droplet size of 0.15 cm3.  相似文献   

8.
The fragmentation process of high-temperature molten drop is a key factor to determine the ratio heat transferred to power in FCIs,which estimates the possible damage degree during the hypothetical severe accident in the nuclear reactors.In this paper,the fragmentation process of melt droplet in FCIs is investigated by theoretic analysis.The fragmentation mechanism is studied when an external pressure pulse applied to a melt droplet,which is surrounded by vapor film.The vapor film collapse which induces fragmentation of melt droplet is analyzed and modeled.And then the generated pressure is calculated.The vapor film collapse model is introduced to fragmentation correlation,and the predicted fragment size is calculated and compared with experimental data.The result shows that the developed model can predict the diameter of fragments and can be used to calculate the fragmentation process appreciatively.  相似文献   

9.
An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction (FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.  相似文献   

10.
为了模拟研究核电站严重事故蒸汽爆炸,本研究设计建造了低温熔融金属入水碎化的可视化实验装置。采用高速摄像仪拍摄记录熔融金属液柱入水碎化的过程。实验研究了不同熔融金属材料,冷却水温度对蒸汽爆炸的影响。实验结果表明熔融金属热扩散系数对蒸汽爆炸有重要影响,热扩散系数越大,越容易发生蒸汽爆炸;冷却水温度则相反,冷却水温度的提高,使金属碎化颗粒增加,降低了熔融金属的传热,抑制了蒸汽爆炸。  相似文献   

11.
A subcooled boiling loop with annular flow channel on an electrically heated rod at the channel axial center was used to make an experimental approach to investigate the vibration characteristic induced by subcooled flow boiling. The experiments were carried out to measure vibration induced in the rod under different conditions of incoming coolant subcooling temperature of 10–80 K, coolant flow rates of 0.1–0.35 × 10?3 m3/s and imposed linear power densities of 17–600 W/cm. Distilled water was used as coolant in the loop. The vibration behavior of the rod was measured by using an accelerometer. Also, a high-speed motion analyzer system was used to analyze the bubble behaviors in the different subcooled boiling conditions.

The results show the intensive SBIV (subcooled boiling-induced vibration) which highly depends on dynamic force generated by rapid growth and collapse of vapor bubbles under high heat flux loading whilst they still attach to the heating surface. These behaviors were influenced strongly by the conditions of subcooling temperature, linear power density and flow rate.  相似文献   

12.
单组件盒内的沸腾池是快堆燃料组件瞬时堵流事故发展的一个重要阶段,这个阶段之后将会导致熔融物向组件盒外的传播.为了了解沸腾池的内部机理,本文建立了单组分沸腾池机理模型:采用漂移速度模型预测池内空泡份额的分布,用焓方法求解包裹沸腾池的燃料固化壳的温度场及厚度.根据不同的流型,对沸腾池和壁面间的换热Greene关系式进行了一些修正.结果表明,沸腾池的形成是由于冷却剂的排热能力降低,而形成的内部产热量和外部排热量的不平衡而导致的;这个热量的不平衡量是产生气泡的根源.Greene经验关系式适用于没有产生气泡之前的熔融池,形成沸腾池之后,要根据不同的流型对其做相应的修正.  相似文献   

13.
TEXAS-Ⅴ是一维三相瞬态蒸汽爆炸数学物理分析程序,本文采用TEXAS-Ⅴ程序对AP1000堆外蒸汽爆炸进行分析研究。结果表明:熔融物在粗混合阶段不断碎裂,并与冷却剂发生剧烈热量交换;AP1000堆外蒸汽爆炸的压力波随传播强度逐渐降低,压力波的传播会触发熔融物前沿后的熔融物碎裂产生更强的压力波,峰值可达70 MPa,且熔融物液柱具有合适的粗混合时间,较大的初始注入速度以及较大的注入直径能触发蒸汽爆炸产生更为强烈的压力波,具有更大的危险性。  相似文献   

14.
Steam explosions are the result of the constrained thermal expansion of heated coolant by the hot fuel fragments resulting of a fine fragmentation process. Results of the hot wire quenching experiment TREPAM are used to investigate the fragments cooling rate which are seen to be smaller than the generally assumed values used in steam explosion codes. As the amount of heat to produce hot coolant (vapor in subcritical conditions or pseudo-vapor in supercritical conditions) cannot be easily obtained experimentally, a simple model using experimental results is presented to provide such an information.  相似文献   

15.
为了研究锆-4在冷却水中的骤冷行为与沸腾传热特性,本文采用可视化方法,并测量了锆-4在骤冷过程中的温度变化。基于一维导热反问题求解,计算得到锆-4表面的热流密度和温度。在骤冷过程中锆-4会依次经历膜态沸腾、过渡沸腾、核态沸腾以及单相对流换热4个阶段,并且分析了轴向高度和冷却水过冷度对骤冷行为以及沸腾传热的影响。结果表明,随着过冷度的增大,骤冷时间减小,最小膜态沸腾温度增大,并且核态沸腾与过渡沸腾传热受加热表面局部特性影响显著,并建立了锆-4表面最小膜态沸腾温度的关系式,对反应堆的安全分析具有重要的意义。   相似文献   

16.
The rewetting or quench temperature is the temperature of a hot solid surface at which a liquid can reestablish contact with the dry surface. An estimation of this temperature is essential in predicting the rate at which the coolant quenches the core of a light-water reactor (LWR) after a loss-of-coolant accident. The present study reviews and evaluates previous work in this area and presents a model relating experiments to theory for the different possible types of reflood in LWRs. It is postulated that, with the exception of those cases of top reflood by a film in a single-rod geometry and bottom reflood with a very low mass flow rate, the quench temperature corresponds to either the minimum film boiling temperature or the Leidenfrost temperature. In cases where there are such exceptions, the quench temperature corresponds to the critical heat flux temperature. New correlations for the rewetting or quench temperature are presented.  相似文献   

17.
为研究各种影响因素对蒸汽爆炸的影响,设计建造了低温熔融金属入水碎化的可视化实验装置。采用高速摄像仪拍摄记录熔融金属液柱入水碎化的过程。实验研究了熔融金属热扩散系数、温度及冷却水温度对蒸汽爆炸的影响。实验结果表明,熔融金属热扩散系数和金属温度的乘积与蒸汽爆炸脉冲成正比;冷却水温度对蒸汽爆炸起抑制作用。熔融金属热扩散系数是影响蒸汽爆炸的重要因素。  相似文献   

18.
Based on the Matlab software, a program for automatic identification of vapor liquid two-phase flow interface was developed. The program can obtain such characteristics as vapor liquid interface change, vapor film thickness, vapor film departure period and normal velocity. The dynamic data of bubbles on the downward facing heated grooved surface with different inclination angles and heat fluxes were processed and analyzed by this program. The results show that when the downward facing heated surface under the nucleate boiling, the vapor film thickness increases with the heat flux, and the bubble departure period decreases with the increase of the heat flux firstly and then maintains a stable value. The vapor film departure period decreases with the increase of inclination angle, and is about 0.27 s when the inclination angle is 5°. When the boiling crisis occurs, the vapor film thickness decreases rapidly, which can be used as the basis for dynamically monitoring the boiling state of heated surface.  相似文献   

19.
基于Matlab软件开发了自动识别气液两相流界面程序,程序可获得气液界面变化、汽膜厚度、汽膜脱离周期和汽膜法向速度等特征。利用该程序对沟槽结构加热表面朝下布置时,在不同倾角、不同热流密度下的汽泡动态数据进行了处理和分析。结果表明:加热表面朝下发生核态沸腾时,汽膜厚度随热流密度的增大而增大,汽泡脱离周期随热流密度的增大先减小,而后维持在一稳定值;汽膜脱离周期随倾角的增大而减小,倾角为5°时的汽膜脱离周期稳定在0.27 s左右。当发生沸腾危机时,汽膜厚度迅速减小,这可作为动态监测加热表面沸腾状态的依据。  相似文献   

20.
Eulerian two-fluid model coupled with wall boiling model was employed to calculate the three dimensional flow field and heat transfer characteristics in a hot channel with vaned spacer grid in PWR. The heat transfer from pellet-gap-cladding to coolant was also taken into account by a system coupled code MpCCI. The wall boiling model utilized in this study was validated by Bartolomei experiment data, and a good agreement can be observed. By solving the governing equation in a two-way coupled method, the distribution of temperature in the pellet-gap-cladding region and the distribution of temperature, void fraction and velocity of two-phase flow in coolant channel can be obtained. The influences of spacer grid and mixing vane on the thermal-hydraulic characteristics were analyzed. The heat transfer capacity was strongly improved by the spacer grid and mixing vane, while the flow resistance was also enlarged. Localized volume fraction of vapor phase decreased due to mixing vane, which will decrease the possibility of the departure from nucleate boiling (DNB) and increase the critical heat flux (CHF). By analyzing the temperature and void fraction at cladding outer surface, the critical regions where hot spot may occur were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号