首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

2.
3.
目的观察微量元素铬对糖尿病大鼠糖脂代谢的影响。方法选糖尿病大鼠经灌胃给予有机铬水溶液治疗12周后,分别观察口服有机铬200μg/d及400μg/d的糖尿病大鼠空腹血糖及血脂水平(血清总胆固醇、甘油三酯、低密度脂蛋白和高密度脂蛋白)。实验分为4组:1组为正常对照组;2组为铬200μg/d组;3组为铬400μg/d组;4组为糖尿病对照组。结果有机铬具有明显降低血糖、血清总胆固醇、低密度脂蛋白和甘油三酯及升高高密度脂蛋白的作用(P0.05~P0.01)。结论有机铬能明显改善糖尿病大鼠的糖脂代谢。  相似文献   

4.
5.
We purposed to determine the impact of erythropoietin on altering glucose metabolism in the settings of in vitro and in vivo experiments. The acute effect of erythropoietin on lowering blood glucose levels was studied in animal experiments. In [3H]-deoxy-D-glucose isotope studies we measured glucose uptake with insulin and erythropoietin using 3T3-L1 cells cultured under normal or high glucose conditions. Altered activation of Akt and ERK pathways was evaluated in immunoblot analyses. Immunocytochemistry was conducted to determine the glucose transporter 4 translocation to the plasma membrane. Addition of erythropoietin significantly lowered blood glucose levels in vivo in rats. The glucose uptake was markedly increased by erythropoietin treatment (at concentrations 0.15, 0.3, and 0.625 ng/ml) in adipocytes grown in high glucose medium (p<0.05), but it remained unaltered in cells under normal glucose conditions. Significant increase of phosphorylation of ERK and Akt was detected due to erythropoietin (p<0.05). Co-administration of erythropoietin and insulin resulted in higher phosphorylation of Akt and [3H]-deoxy-D-glucose uptake in adipocytes than insulin treatment alone. We found that erythropoietin induced the trafficking of glucose transporter 4 to the plasma membrane. Our data showed that erythropoietin significantly decreased blood glucose levels both in vivo and in vitro, in part, by increasing glucose uptake via the activation of Akt pathway. Preliminary data revealed that adipocytes most likely exhibit a specific receptor for erythropoietin.  相似文献   

6.
A previous study in our laboratory showed that streptozotocin (STZ) induced diabetic, deoxycorticosterone acetate (DOCA) induced hypertensive rats exhibited significantly lower levels of plasma glucose than did normotensive diabetic animals. The present experiments further investigate the effects of DOCA treatment on fasting levels of plasma glucose and insulin and on their changes after oral glucose challenge in nondiabetic and STZ-diabetic rats. It was found that, in nondiabetic rats, DOCA-induced hypertension was associated with normal glucose levels and glucose tolerance but with significantly lower levels of plasma insulin. DOCA-treated diabetic animals showed significantly lower levels of plasma glucose, but their plasma insulin concentrations were not significantly different from those of the DOCA vehicle treated diabetic rats. DOCA-treated diabetic rats also had significantly higher plasma levels of cholesterol and triglycerides. It is suggested that DOCA may have a direct or indirect action on the assimilation, production, or utilization of glucose, perhaps leading to an improvement in insulin sensitivity and subsequently a decrease in insulin secretion.  相似文献   

7.
The present experiment was carried out to investigate the metabolism of palatinose (6-O-alpha-D-glucopyranosyl-D-fructose) in the rat. The bolus injection of palatinose (0.5 g/kg) in the tail vein of normal and streptozotocin (STZ) diabetic rats caused significant increments in glucose and insulin concentrations. However, in severe STZ diabetic rats (greater than 300 mg/dl of fasting plasma glucose) no significant change in glucose and insulin concentrations was observed. In liver perfusion, the gradual decrease in glucose output from the normal and mild STZ diabetic rat livers perfused with 20 mM Krebs-Ringer-Tris buffer pH 7.4 was prevented by the addition of 5.5 mM palatinose in the perfusate and fructose was detected in the effluent during the palatinose infusion. The results indicate that palatinose is metabolized to glucose and fructose in both normal and diabetic rat tissues, and this causes the increase in blood glucose concentration. On the other hand, the direct stimulatory effect of insulin release from pancreatic B-cell was not observed when the palatinose was infused into the isolated perfused rat pancreas. The study suggest that palatinose administered parenterally is metabolized by tissues and expected to be used as a source of fluid and energy supply.  相似文献   

8.
The study examined the effect of insulin on glucose metabolism in freshly isolated calcium-tolerant heart myocytes from adult rats. The uptake of 2-deoxyglucose demonstrated an initial lag in response to insulin and the maximal insulin effect was not attained until after 3 min preincubation with the hormone. A dose-response study of 14CO2 production from [14C]glucose revealed that the maximum insulin stimulation of glucose utilization occurred with 5 mU/ml. Both the uptake and the oxidation of glucose proceeded at a linear rate in the absence and presence of insulin. However, insulin exerted a greater effect on the uptake (42-54%) than on the oxidation (17-22%) of exogenous glucose. Incorporation of glucose into glycogen was markedly increased by insulin and resulted in the myocyte glycogen concentration returning to in vivo levels. In the absence of insulin, glucose incorporation plateaued within 10 min of incubation and the glycogen concentration was not altered. Our findings also indicate that at equilibrium, insulin-treated cells exhibited a higher glycogen turnover rate. It thus appears that insulin exerts a differential effect on the different pathways in glucose metabolism in the isolated cardiac cells. This may be related in part to their quiescent state and lower energy demand.  相似文献   

9.
In order to clarify the conclusion that the change of basal metabolism affected by physical training, effect of endurance training for 8 weeks on basal metabolism of young adult rats were investigated. Results are as follows. Endurance training increased significantly running ability of rats, for instance the running time at a speed of 25 m/min on the control and training groups were 53.7 +/- 18.8 min, 232.8 +/- 32.8 min, respectively. The ratio of soleus's weight to the body weight in trained rats was high significantly (p less than 0.05). The glycogen contents of trained rats under the condition of feeding have higher than the control rats. Especially, glycogen contents of the soleus and red-gastrocnemius significant increased (p less than 0.05), and liver glycogen content under the same condition increased significantly (p less than 0.02). The oxygen consumption in trained rats increased significantly compared with control rats (p less than 0.03). The basal metabolism of trained rats showed 1.24-fold increase compared with those of control (p less than 0.02). Oxygen consumption of sliced ventricle in trained rats increased significantly (p less than 0.03), it's rate was 118% of control. However those of other tissues did not change significantly.  相似文献   

10.
通过对不同强度有氧运动时大鼠脂代谢相关指标进行测试,发现规律的、周期性的、适宜的有氧运动对维持机体健康有益.  相似文献   

11.
Repeated administration of benzylamine plus vanadate have been reported to exhibit anti-hyperglycemic effects in different models of diabetic rats. Likewise oral treatment withMoringa oleifera extracts which contain the alkaloïd moringine, identical to benzylamine, has also been shown to prevent hyperglycemia in alloxan-induced diabetic rats. With these observations we tested whether prolonged oral administration of benzylamine could interact with glucose and/or lipid metabolism. Seven week old male Wistar rats were treated for seven weeks with benzylamine 2.9 g/l in drinking water and were submitted to glucose tolerance tests. A slight decrease in water consumption was observed in benzylamine-treated animals while there was no change in body and adipose tissue weights at the end of treatment. Blood glucose and plasma insulin, triacylglycerol or cholesterol levels were not modified. However, benzylamine treatment resulted in a decrease in plasma free fatty acids in both fed and fasted conditions. Benzylamine treatment improved glucose tolerance as shown by the reduction of hyperglycemic response to intra-peritoneal glucose load. Oral benzylamine treatment did not alter the response of adipocytes to insulin nor to insulin-like actions of benzylamine plus vanadate, viain vitro activation of glucose transport or inhibition of lipolysis. This work demonstrates for the first time that oral administration of benzylamine alone influences glucose and lipid metabolism. However, these results obtained in normoglycemic rats require to be confirmed in diabetic models.  相似文献   

12.
13.
14.
Thyrotoxicosis is known to induce a broad range of changes in carbohydrate metabolism. Recent studies have identified the sympathetic and parasympathetic nervous system as major regulators of hepatic glucose metabolism. The present study aimed to investigate the pathogenesis of altered endogenous glucose production (EGP) in rats with mild thyrotoxicosis. Rats were treated with methimazole in drinking water and l-thyroxine (T(4)) from osmotic minipumps to either reinstate euthyroidism or induce thyrotoxicosis. Euthyroid and thyrotoxic rats underwent either a sham operation, a selective hepatic sympathetic denervation (Sx), or a parasympathetic denervation (Px). After 10 days of T(4) administration, all animals were submitted to a hyperinsulinemic euglycemic clamp combined with stable isotope dilution to measure EGP. Plasma triiodothyronine (T(3)) showed a fourfold increase in thyrotoxic compared with euthyroid animals. EGP was increased by 45% in thyrotoxic compared with euthyroid rats and correlated significantly with plasma T(3). In thyrotoxic rats, hepatic PEPCK mRNA expression was increased 3.5-fold. Relative suppression of EGP during hyperinsulinemia was 34% less in thyrotoxic than in euthyroid rats, indicating hepatic insulin resistance. During thyrotoxicosis, Sx attenuated the increase in EGP, whereas Px resulted in increased plasma insulin with unaltered EGP compared with intact animals, compatible with a further decrease in hepatic insulin sensitivity. We conclude that chronic, mild thyrotoxicosis in rats increases EGP, whereas it decreases hepatic insulin sensitivity. Sympathetic hepatic innervation contributes only to a limited extent to increased EGP during thyrotoxicosis, whereas parasympathetic hepatic innervation may function to restrain EGP in this condition.  相似文献   

15.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

16.
Administration of acetoactate to fed lactating rats rapidly decreases glucose uptake by the mammary gland, and causes an output of pyruvate, whereas lactate uptake remains unchanged. Similar changes, though not identical, occur in starved lactating rats, which suggests that the increased acetoacetate concentration in this situation may be one of the factors responsible for the alterations in glucose metabolism.  相似文献   

17.
Roy, B. D., M. A. Tarnopolsky, J. D. MacDougall, J. Fowles,and K. E. Yarasheski. Effect of glucose supplement timing onprotein metabolism after resistance training. J. Appl.Physiol. 82(6): 1882-1888, 1997.We determinedthe effect of the timing of glucose supplementation on fractionalmuscle protein synthetic rate (FSR), urinary urea excretion, and wholebody and myofibrillar protein degradation after resistance exercise.Eight healthy men performed unilateral knee extensor exercise (8 sets/~10 repetitions/~85% of 1 single maximal repetition). Theyreceived a carbohydrate (CHO) supplement (1 g/kg) or placebo (Pl)immediately (t = 0 h) and 1 h(t = +1 h) postexercise. FSR wasdetermined for exercised (Ex) and control (Con) limbs by incrementalL-[1-13C]leucineenrichment into the vastus lateralis over ~10 h postexercise. Insulinwas greater (P < 0.01) at 0.5, 0.75, 1.25, 1.5, 1.75, and 2 h, and glucose was greater(P < 0.05) at 0.5 and 0.75 h for CHO compared with Pl condition. FSR was 36.1% greater in the CHO/Ex leg than in the CHO/Con leg(P = not significant) and6.3% greater in the Pl/Ex leg than in the Pl/Con leg(P = not significant). 3-Methylhistidine excretion was lower in the CHO (110.43 ± 3.62 µmol/g creatinine) than Pl condition (120.14 ± 5.82, P < 0.05) as was urinary ureanitrogen (8.60 ± 0.66 vs. 12.28 ± 1.84 g/g creatinine,P < 0.05). This suggests that CHOsupplementation (1 g/kg) immediately and 1 h after resistance exercisecan decrease myofibrillar protein breakdown and urinary urea excretion,resulting in a more positive body protein balance.

  相似文献   

18.
Effects of vanadium on glucose metabolism in vitro   总被引:5,自引:0,他引:5  
Although vanadium is found abundantly in the animal and plant kingdoms it has no known biological function. Vanadate compounds have been shown to inhibit cholesterol synthesis, enhance phospolipid oxidation and impair ATP production. In the present study, vanadium is observed to affect glucose metabolism directly in a number of in vitro assay systems, including the stimulation of glucose oxidation and transport in adipocytes, stimulation of glycogen synthesis in liver and diaphragm, and inhibition of hepatic gluconeogenesis and intestinal glucose transport. This survey of findings suggest that vanadium can directly influence glucose metabolism and may play a role in its regulation in vitro.  相似文献   

19.
Epinephrine increases the oxidation of glucose in adipose tissue even when its lipolytic effects are markedly reduced or abolished by propranolol, nicotinic acid, ouabain, or thyroidectomy. In order to locate the site(s) at which epinephrine stimulates glucose utilization, we studied the effects of epinephrine on the oxidation of various metabolites of glucose. Epinephrine neither increased the production of (14)CO(2) from 1- or 3-(14)C-pyruvate nor affected pyruvate conversion to glyceride-glycerol. To assess the possibility that epinephrine might accelerate the entry of glucose into adipocytes, we studied the accumulation of the nonmetabolized sugar l-arabinose in the intracellular water of adipose tissue. Epinephrine increased arabinose penetration into adipocytes to a degree comparable with that caused by 0.1 mU/ml of insulin. Virtually identical results were obtained in tissues from thyroidectomized rats in which the lipolytic effects of epinephrine were significantly reduced. It is concluded that epinephrine increases glucose oxidation by promoting its entry into adipose tissue and that the effect is independent of lipolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号