首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过电导率测试、显微组织观察、力学性能测试、XRD物相分析以及α(Al)基体点阵常数的计算等方法研究了固溶温度和时间对Al-0.69Mg-1.12Si-0.5Mn合金微观组织、力学性能和断口形貌的影响。结果表明:实验合金板材的最佳固溶工艺为550℃/30min;在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为375MPa、354MPa、10.5%、和41.7%IACS。合金主要由α-Al基体、Mg2Si和不可溶Mn12Si7Al5等合金相组成;通过基体点阵常数的精确计算,能较好地表征合金的固溶程度。在510~550℃范围内,适当提高固溶温度和延长固溶时间,粗大的平衡相逐渐回溶,基体过饱和程度增加,合金的强度逐渐升高;进一步提高固溶温度或延长固溶时间,合金强度逐渐降低。  相似文献   

2.
固溶温度对6061铝合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)等分析手段,研究固溶温度对6061铝合金热挤压板材的显微组织、力学性能及拉伸断口形貌的影响.结果表明,实验合金的强度和硬度随着固溶温度的升高而提高,当基体有轻微过烧时强度并没有降低;实验合金的最佳固溶工艺为565℃×40 min.XRD物相分析表明,在固溶处理过程中发生溶解的析出相粒子主要为Mg2Si,而残留的粗大析出相则主要是富Fe化合物.通过基体点阵常数的精确测量可以很好的表征合金的固溶程度.固溶处理后残留的析出相粒子是影响合金拉伸断口形貌的主要因素.当固溶温度低于535℃时,合金的断裂属于单一的韧窝断裂;当固溶温度高于535℃时,合金的断裂是由沿晶脆性断裂和韧窝断裂组成的混合断裂.  相似文献   

3.
《铸造》2017,(3)
通过显微组织观察、XRD物相分析、形貌扫描以及硬度和拉伸性能测试等手段,分析了固溶处理对Al-13.0Si-4.5Cu-1.0Mg-2.0Ni合金微观组织和力学性能的影响。结果表明,合金最佳固溶处理制度为510℃×6 h,时效后,合金室温抗拉强度由187 MPa提高到290 MPa,提高了57.6%。固溶处理后,共晶硅显著球化且弥散分布在α-Al基体中,减轻对合金基体割裂作用;同时,合金中M-Mg_2Si、θ-Al_2Cu和Q-Al_5Cu_2Mg_8Si_6相溶解到α-Al基体形成过饱和固溶体,并在随后时效过程中重新析出,对合金起到固溶强化和沉淀强化作用。  相似文献   

4.
固溶处理对7B04铝合金组织和性能的影响   总被引:1,自引:1,他引:1  
通过显微组织观察、拉伸力学性能测试、XRD衍射物相分析以及α(Al)基体点阵常数的测量等方法研究了固溶处理对7B04铝合金组织和性能的影响.结果表明:在410~470℃范围,随固溶温度升高和时间延长,由于粗大的平衡相逐渐回溶,合金的强度逐渐升高;进一步提高固溶温度或延长固溶时间,合金强度逐步降低.7B04铝合金的优选固溶处理制度为470℃×60 min.  相似文献   

5.
通过电导率测试、力学性能测试、硬度测试、显微组织观察、SEM背散射电子分析以及XRD衍射物相分析等方法研究了固溶温度和时间对7003铝合金性能、微观组织和断口形貌的影响。结果表明:实验用7003铝合金板材的固溶温度范围很宽,在450~500℃范围内,固溶温度对7003铝合金的性能影响不大;实验合金板材的最佳固溶工艺约为480℃×50 min,在此条件下,合金的抗拉强度、屈服强度、伸长率、硬度和电导率分别为399 MPa、352 MPa、13%、126.4 HV1和38.6%IACS。X射线衍射结果表明:挤压态7003铝合金中主要有Al基体、Mg Zn2和Al85(Mn0.72Fe0.28)14Si等杂质相组成。  相似文献   

6.
用XRD衍射和透射高分辨HTEM方法分析Mg-4Y-3Nd合金在固溶处理525℃×8 h、时效温度250℃、时效时间16 h状态下的显微组织、析出相的点阵结构和基体点阵常数变化。结果表明:经过固溶时效的Mg-4Y-3Nd合金的显微组织由α-Mg固溶体、析出相Mg24Y5、Mg41Nd5和Mg14Nd2Y组成。析出相在晶内和晶界同时析出,晶内析出相形状为块状或短杆状,呈弥散分布,晶界上析出相呈三角形为链状分布,时效析出相Mg14Nd2Y与基体为半共格界面位相关系。随着析出相的生成,基体的点阵常数变大,同一晶面的衍射角(2θ)减小,晶面间距增大。  相似文献   

7.
超高强Cu-Ni-Sn合金的热处理工艺与组织性能   总被引:2,自引:2,他引:0  
通过金相及扫描电镜组织分析、能谱微区成分分析、X射线物相分析、硬度和力学性能测试等方法,研究了Cu-Ni-Sn合金铸态及不同工艺固溶和时效处理后的组织形貌与力学性能.结果表明,铸态Cu-Ni-Sn合金为枝晶组织,分别由α相、层片状α+γ相及富Sn相组成.时效后的显微组织由α((CuNiSn)相、层片状α+γ(CuNi)3Sn相组成,XRD分析γ相中存在贫Sn区和富Sn区,α晶粒内析出弥散细小的γ相起着强化作用.合金经800℃固溶+400℃×4 h时效后,其硬度达到35 HRC,抗拉强度1300 MPa,抗压强度1705 MPa,弹性模鼍127.7 GPa.  相似文献   

8.
《铸造技术》2017,(3):581-584
对2024合金薄板进行了固溶和时效热处理,研究了时效时间对合金硬度、电导率、力学性能、组织和断口形貌的影响。结果表明,经过固溶和时效处理后,2024合金组织主要由α-Al、Al_7Cu_2Fe和Al_2CuMg相组成。随着时效时间增加,显微硬度先增大后降低,在24h时显微硬度最大。电导率随时效时间延长而提高,时效12~24 h时,电导率增加速度较快,超过24 h后的增加速度变缓。经过490℃×1h固溶+175℃×24 h时效处理后,2024合金可以取得最佳的强度和塑性结合。  相似文献   

9.
采用冷等静压法和粉末冶金法制备Ti-6Al-4V-1.5Mn钛合金,并利用光学显微镜、XRD、SEM、TEM和拉伸试验机等手段对固溶时效处理后合金的组织和力学性能进行观察和分析。结果表明:试验合金经950℃×40 min固溶处理后,合金基体的组织主要为板条状的α相和细小的α'相。随着固溶温度的增加,试验合金的抗拉强度和伸长率均增加,当在950℃固溶40 min时,试验合金的具有最佳的力学性能。当试验合金经950℃×40 min固溶处理后,随后在不同的温度下进行保温6 h时效处理。随着时效温度升高,试验合金的抗拉强度和伸长率均减少,其中试验合金在460℃时效6 h时具有最佳的力学性能,并对其拉伸断口的组织分析可知,韧窝的数量最多。最后由TEM和XRD分析了最佳固溶时效工艺处理后的样品,基体组织主要为α-Ti和β-Ti,并在XRD图谱中存在较为明显的衍射峰。  相似文献   

10.
采用扫描电镜(SEM)、X射线衍射(XRD)和力学性能测试等手段研究了固溶处理对ZA27合金组织和性能的影响。在300~380℃范围,合金经不同温度固溶处理1 h,水淬后进行相同的时效(160℃×8 h)处理。分析了在不同温度固溶处理的淬火态和时效态合金的显微组织及力学性能。结果表明,在365℃固溶处理能够使溶质原子充分溶入基体,时效析出相数量多、尺寸小、分布均匀,时效强化效果最好。ZA27合金的优选固溶工艺为365℃×1 h。  相似文献   

11.
研究了Ti-1300合金固溶处理后低速率升温时效的α相析出行为及力学性能。通过SEM、TEM和拉伸试验等手段对不同固溶温度处理的Ti-1300合金进行显微组织观察和力学性能测试。结果表明:随着固溶温度由820 ℃降低至790 ℃,初生α相(αp)的尺寸变化不明显,但是其含量(面积分数)从0.8%增至6.7%;合金经4 ℃/min升温速率加热到500 ℃时效4 h,显微组织中析出次生α相(αs)的长度从0.098 μm 增加到0.440 μm。此外,固溶温度降低使合金的强度与塑性均提高,拉伸断口由沿晶脆性断裂特征转变为韧窝状的韧性断裂特征。820 ℃固溶处理的试样其抗拉强度为1358 MPa,断后伸长率小于2%,而790 ℃固溶处理的试样其抗拉强度为1548 MPa,断后伸长率为10.2%,可获得优良的强塑性匹配。分析认为790 ℃固溶处理组织中初生α相含量较多,其尺寸为微米尺度,同时基体中时效析出的片层αs相能产生显著的强化效果。  相似文献   

12.
采用OM、SEM、XRD、维氏硬度以及力学性能测试等方法,研究了固溶时效处理对TC6合金显微组织、相结构以及力学性能的影响。结果表明:TC6合金经过900 ℃固溶处理后,合金由片层α相、针状马氏体α′相以及β相组成;而经过1000 ℃固溶处理后,合金主要由针状α′马氏体相和β相组成。对不同固溶温度下的合金样品进行时效处理,针状α′马氏体相完全分解为α相和β相。并且随着时效温度升高,β相的相对含量逐渐增大。通过对比,TC6合金经过900 ℃固溶后在500 ℃下进行时效处理后综合力学性能达到最佳,此时的抗压强度和屈服强度为2000 MPa、1061 MPa,硬度值为499 HV0.2。  相似文献   

13.
采用XRD、SEM和拉伸力学性能测试方法,分析了铸态和固溶时效态Mg-11Gd-3Y合金的显微组织和力学性能。结果表明,热处理没有改变Mg-11Gd-3Y合金相的组成,合金铸态和固溶时效态组织均由α-Mg基体、Mg_5Gd和Mg_(24)Y_5相组成。固溶时效态合金的强化机制主要为固溶强化和时效强化,其最大抗拉强度为230 MPa,比铸态合金提高了12%。  相似文献   

14.
采用显微组织分析、硬度测试、拉伸测试、SEM断口分析等手段,研究了热处理工艺对大应变轧制Al-Mg-Si-Cu合金板材显微组织及力学性能的影响。研究表明:轧制态Al-Mg-Si-Cu合金中轧制面组织呈纤维状且存在大量残留相。合金经固溶后显微组织中残留相基本溶解,晶粒得到小幅度长大,在时效处理后强化相均匀析出,使得合金得到强化效果。合金经510℃/80 min固溶和195℃/13 h时效热处理后,测试硬度值为127.1 HV,抗拉强度为410 MPa,伸长率达24.8%,断口分析为韧性断裂,合金表现出良好的力学性能。  相似文献   

15.
采用扫描电镜观察、拉伸和断裂韧性测试研究了不同固溶冷却方式下TB15钛合金经900 ℃×2 h固溶+530 ℃×8 h时效后的力学性能、断口形貌和显微组织。结果表明,固溶冷却方式对TB15钛合金强度和塑性的影响较大,对断裂韧性的影响较小。固溶后回充0.1 MPa氩气真空气冷时,合金的综合力学性能最好,抗拉强度为1391 MPa,伸长率为7.0%,断面收缩率为13.6%,断裂韧度为70.3 MPa·m1/2。随着固溶冷却速率的增加,TB15钛合金的断裂韧度逐渐减小,但变化幅度不大。不同固溶冷却方式下,TB15钛合金经固溶时效后的次生α相数量、厚度及片层间距有所不同。与空冷相比,回充0.1 MPa氩气真空气冷的片层状次生α相数量增多,厚度略有增加,片层间距有所增大。  相似文献   

16.
通过光学显微镜、扫描电镜、XRD、DSC测试、硬度测试和拉伸试验等,研究了不同固溶时效处理对Al-Cu-Mn-Er合金显微组织和力学性能的影响。结果表明,铸态合金的最佳固溶时效制度为540 ℃固溶12 h、185 ℃时效6 h。该固溶制度下无过热或“过烧”现象,溶质原子充分扩散,铸造过程产生的残留相大量回溶基体,此时,合金硬度值最高,为142.28 HV0.1,抗拉强度为370.37 MPa,屈服强度为300.34 MPa,伸长率为6.50%。  相似文献   

17.
研究了固溶温度及冷却速度对Ti3510钛合金锻件的显微组织及力学性能的影响。XRD结果表明,固溶后空冷的合金相组成主要为α相及β相,固溶后水冷的合金相主要为α'相及β相,且有少量的α'相析出。显微组织表明,合金微观组织形貌对冷却速度十分敏感,固溶后空冷的合金主要为细小的针状或点状析出物,固溶后水冷的合金主要为板条状次生相。室温拉伸结果表明,随着固溶温度的升高,空冷后的合金强度及塑性总体上缓慢提高,至800℃处理时强度达到最高,抗拉强度达到998 MPa,伸长率为10%。水冷处理后合金强度下降,但塑性提高。850℃固溶后水冷,合金的抗拉强度达到812 MPa,伸长率为25%。  相似文献   

18.
通过显微组织观察和室温拉伸实验,研究了固溶热处理制度和时效制度对含Sc的Al-Cu-Li-Zr合金拉伸力学性能与显微组织的影响。结果表明,适当提高固溶温度或延长固溶时间可以促进合金中过剩相的溶解,提高合金的强度和塑性;合金适宜的固溶-时效处理制度为530℃×1 h水淬+160℃×40 h时效,在此条件下,合金的抗拉强度、屈服强度和伸长率分别为490MPa、416 MPa和9.8%。T1相是合金的主要时效强化相。  相似文献   

19.
研究了Ti-26合金经不同变形量变形后,在β相区和α β相区分别固溶、时效的力学性能和显微组织的变化.研究发现,Ti-26合金经80%变形后,经730℃×30min 500℃×10h固溶时效的综合力学性能最好;变形量为50%~80%时,随变形量的增加,强度变化不大,塑性得到明显提高;固溶时效后的组织为β基体和基体上弥散分布的短棒状α相.  相似文献   

20.
对WE43镁合金进行固溶和固溶后不同时间时效的热处理,得到五种热处理状态。分别对五种状态合金进行静态拉伸力学性能测试。用光学显微镜观察不同镁合金的金相组织,用SEM观察微观组织和断口形貌,用光学显微镜观察与断口相对应的显微组织。最后分析固溶和固溶后时效热处理下,WE43镁合金的显微组织和力学性能的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号