首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Bathmetric highs on the old crust proximal to ridge-transform intersections (RTIs), termed intersection highs, are common but poorly understood features at offsets of fast to intermediate rate spreading centers. We have combined new reflection seismic, photographic, and geochemical data with previously published Seabeam, SeaMARC I, and SeaMARC II data to address the nature of the intersection highs at the Clipperton Fracture Zone. The Clipperton Intersection Highs are both topped by a carapace of young lavas at least 100 m thick. These lavas, which were erupted on the intersection highs, are chemically similar to their adjacent ridge segments and different from the surrounding older crust. At least some of the erupted magma traveled directly from the adjacent ridge at a shallow crustal level. Ridge-related magma covers and intrudes at least the upper 500 m of the transform tectonized crust at the RTI. We suspect that additional magma enters the intersection highs from directly below, without passing through the ridge. The young oceanic crust near the western Clipperton RTI is not thin by regional comparison. The 1.4 m.y. old crust near the eastern Clipperton RTI thickens approaching the transform offset. If the thermal effects of the proximal ridge were negligible, the eastern intersection high crust would appear to be in isostatic equilibrium. We believe that thermal effects are significant, and that the intersection high region stands anomalously shallow for its crustal thickness. This is attributable to increased temperature in the mantle below the ridge-proximal crust. Although ridge magma is injected into the proximal old crust, plate boundary reorganization is not taking place. Intersection high formation has been an ongoing process at both of the Clipperton RTIs for at least the past 1 m.y., during which time the plate boundary configuration has not changed appreciably. We envision a constant interplay between the intruding ridge magma and the disrupting transform fault motion. In addition, we envision a nearly constant input of magma from below the high, as an extension of the magma supply to the ridge from the mantle. Because the proximal ridge profoundly affects the juxtaposed crust at the RTI, sea floor fabric along the aseismic extensions of this fast-slipping transform fault is primarily a record of processes at work at the RTI rather than a record of transform tectonism.  相似文献   

2.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号