首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
目的利福平(Rifampicin,RIF)具有肝毒性,但其机制尚不清楚。本研究在RIF诱导的肝内胆汁淤积小鼠中,探讨RIF对肝细胞胆汁酸转运体胆汁酸输出泵(bile salt exportpump,Bsep)和多药抵抗相关蛋白-2(multidrug resistance-associated protein-2,Mrp2)表达和定位影响。方法 48只♀ICR小鼠随机分为4组,RIF1wk组:经灌胃给予RIF(200mg.kg-1.d-1),连续1周,于末次给药后6h取材;RIF6h组:单次灌胃给予RIF(200mg.kg-1)后6h取材;RIF1周对照组(CON1wk)与RIF6h对照组(CON6h):经灌胃给予等容积生理盐水。所有小鼠均收集血液和肝组织,常规生化检测血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)、总胆红素(TB)和结合胆红素(DB),并检测小鼠血清和肝组织总胆汁酸(TBA)水平。HE染色分析肝组织病理改变。RT-PCR测定肝脏肝细胞胆汁酸转运体Bsep和Mrp2mRNA表达。免疫荧光法分析Bsep和Mrp2在肝细胞的位置。结果给予RIF1周后,小鼠血清TB由(1.25±0.69)μmol.L-1上升至(65.73±12.08)μmol.L-1,上升近70倍,DB由(0.77±0.40)μmol.L-1上升至(53.33±12.43)μmol.L-1,上升约80倍,ALP由(110.2±13.8)U.L-1上升至(279.5±80.4)U.L-1,上升约1.5倍,TBA由(3.15±0.89)μmol.L-1上升至(13.54±6.51)μmol.L-1,上升约5倍并伴有血清ALT和AST轻度升高;肝脏组织TBA由(0.15±0.04)μmol.g-1liver上升至(0.30±0.19)μmol.g-1liver,上升约2倍;肝脏组织HE染色显示肝细胞出现脂肪变性、轻度坏死和炎症。单次给予RIF6h后血清TB、DB、ALP、ALT、AST和TBA明显上升,但未观察到小鼠肝脏组织病理发生改变。免疫荧光分析显示,给予小鼠RIF1wk与单次给予RIF6h后肝细胞中Bsep和Mrp2的定位发生了改变。而无论单次给予RIF还是连续给药1周,肝细胞Bsep和Mrp2mRNA表达水平均未发生变化。结论肝细胞胆汁酸转运体Bsep和Mrp2定位改变可能是RIF诱发肝内胆汁淤积的重要机制。  相似文献   

3.
4.
The function of hepatic transporters is to move organic substances across sinusoidal and canalicular membranes. During extrahepatic cholestasis, transporters involved in the movement of substances from blood to bile, such as sodium/taurocholate-cotransporting polypeptide (Ntcp) and multidrug resistance protein 2 (Mrp2), are down-regulated, whereas others that transport chemicals from liver to blood, such as Mrp3, are up-regulated. Unlike extrahepatic cholestasis, where transporter expression responds to the stress of accumulating bile constituents, lipopolysaccharide (LPS)-induced intrahepatic cholestasis may be directly caused by alterations in transporter expression. The aim of this study was to quantitatively determine the effect of LPS on transporter expression and study the mechanism(s) by which LPS alters mRNA levels of major hepatic transporters in Sprague-Dawley rats. Hepatic mRNA levels of Mrp2, Mrp6, multiple drug resistance protein 1a (Mdr1a), organic anion-transporting polypeptide 1 (Oatp1), Oatp2, Oatp4, Ntcp, bile salt export pump, organic cation transporter 1 (Oct1), and organic anion transporter 3 (Oat3) were dramatically decreased, beginning approximately 6 h after LPS administration, whereas Mrp5 and Oat2 levels were unchanged. In contrast, LPS increased mRNA levels of Mrp1, Mrp3, and Mdr1b concurrently with the down-regulated transporters. Pretreatment with dexamethasone, which decreases the release of cytokines, reversed the reduction of Mdr1a, Oatp1, Oatp2, Oct1, and Ntcp mRNA following LPS administration. Furthermore, dexamethasone pretreatment also prevented the LPS-mediated increase in Mrp1, Mrp3, and Mdr1b, whereas pretreatment with aminoguanidine or gadolinium chloride, an inhibitor of inducible nitric oxide synthetase and a Kupffer cell toxicant, respectively, had no effect on the LPS-induced changes. The concurrent repression and induction of various transporters, as well as dexamethasone abatement of both LPS-mediated repression and induction, indicates that these responses may be mediated through similar pathways.  相似文献   

5.
Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury.  相似文献   

6.
Ethinylestradiol (EE) induces cholestasis by affecting bile salt-dependent and -independent fractions of the bile flow. The decrease in bile salt-independent flow is thought to be due, in part, to a reduction in the expression of the canalicular transporter Mrp2. The impact of modulation of Mrp2 function by sodium ursodeoxycholate (UDC) in EE cholestasis is unknown. We evaluated the protective effect of UDC on EE-induced impairment of Mrp2 activity in vivo and in isolated hepatocytes, by using the substrate dinitrophenyl S-glutathione (DNP-SG). EE was administered to male Wistar rats at a dose of 5 mg/kg s.c. for 5 days. UDC was coadministered with EE at a dose of 25 mg/kg b.wt. i.p. for the same period. EE alone reduced DNP-SG biliary excretion by 55% when compared with controls. Coadministration with UDC partially restored the alteration. Secretion rate of DNP-SG was decreased by 30% in isolated hepatocytes from EE-treated rats, but, contrary to in vivo results, UDC coadministration did not restore DNP-SG transport, likely as a consequence of bile salt washout resulting from the isolation procedure. As a confirmation, tauroursodeoxycholate hepatocyte preloading significantly increased Mrp2 activity. Western blotting analysis of Mrp2 indicated that EE administration significantly reduced its level in total and plasma membranes and that UDC coadministration failed to revert this alteration. In conclusion, UDC improvement in Mrp2 transport activity in vivo likely derived from a direct enhancement of Mrp2 function rather than from a restoration of its expression levels. This provides a novel mechanism explaining the beneficial effects of UDC in EE-induced cholestasis.  相似文献   

7.
We evaluated the effect of acetaminophen (APAP), given as a single, 1g/kg body weight dose, on expression and activity of rat liver multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp), two major canalicular drug transporters. The studies were performed 24h after administration of the drug. APAP induced an increase in plasma membrane content of Mrp2 detected by western blotting, consistent with increased detection of the protein at the canalicular level by immunoflourescence microscopy. In vivo biliary excretion of dinitrophenyl-S-glutathione, a well known Mrp2 substrate, was slightly but significantly increased by APAP, agreeing well with upregulation of the transporter. Basal biliary excretion of oxidized glutathione, an endogenous Mrp2 substrate, was also increased by APAP, likely indicating increased hepatic synthesis as a result of APAP-induced oxidative stress followed by accelerated canalicular secretion mediated by Mrp2. APAP also increased the expression of P-gp detected by western blotting and immunofluorescence microscopy as well as the in vivo biliary secretory rate of digoxin, a model P-gp substrate. Because specific APAP-conjugated metabolites are Mrp2 substrates, we postulate that induction of Mrp2 by APAP may represent an adaptive mechanism to accelerate liver disposition of the drug. In addition, increased Mrp2-mediated elimination of oxidized glutathione may be essential in maintaining the redox equilibrium in the hepatocyte under conditions of APAP-induced oxidative stress.  相似文献   

8.
The ability of the liver and small intestine for secretion of dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), into bile and lumen, respectively, as well as expression of Mrp2 in both tissues, were assessed in 70-75% hepatectomized rats. An in vivo perfused intestinal model was used. A single i.v. dose of 30 micromol/kg b.w. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered and its glutathione conjugate, DNP-SG, was determined by HPLC in bile and intestinal perfusate. One and seven days after hepatectomy, biliary excretion of DNP-SG was decreased by 90 and 50% with respect to shams, respectively, when expressed per mass unit. In contrast, intestinal excretion was increased by 63% or unchanged one and seven days post-hepatectomy, respectively. Tissue content of DNP-SG 5 min after CDNB administration was substantially decreased in liver and significantly increased in intestine, one day post-hepatectomy. Western and immunofluorescence studies revealed preserved levels and localization of Mrp2 in both tissues from hepatectomized animals, irrespective of the time analyzed. In spite of preserved expression of Mrp2, the higher availability of DNP-SG in intestinal cells, likely as a consequence of increased glutathione-S-transferase-mediated conjugation of CDNB, may explain the in vivo findings. Further experiments in isolated hepatocytes suggested that decreased synthesis of DNP-SG rather than altered canalicular transport is responsible for the substantial impairment in excretion of this compound into bile. Taken together, these results indicate that the intestine may partially compensate for liver DNP-SG disposition, particularly shortly after surgery, while liver capability is recovering.  相似文献   

9.
目的:通过多药耐药相关蛋白2(multidrug resistance protein 2,Mrp2)和有机阴离子转运多肽2(organic anion transporting polypeptides 2,Oatp2)初步探究雷公藤甲素诱导小鼠肝损伤的机制。方法:雄性ICR小鼠单次灌胃给予雷公藤甲素(1.0 mg·kg-1)24 h后称重,摘眼球采血后分离血清,测定血清生化指标;取肝组织做病理切片;采用免疫印迹法检测肝脏组织中Mrp2和Oatp2的蛋白表达量。结果:与对照组相比,雷公藤甲素组肝重指数显著增加(P<0.05),部分血清生化指标显著上升(P<0.05),且肝细胞发生核碎裂和脂肪变性。雷公藤甲素组Oatp2的表达较对照组显著升高了32.79%(P<0.05),而Mrp2的表达较对照组显著下降了45.47%(P<0.01)。结论:雷公藤甲素可能通过上调肝细胞膜转运体Oatp2和下调Mrp2,扰乱肝内胆红素和胆汁酸代谢排泄平衡,可能是雷公藤甲素诱导肝损伤的机制之一。  相似文献   

10.
The multidrug‐resistance‐associated proteins 1 and 2 (MRP1/MRP2) are transporters responsible for the efflux of drugs and endogenous compounds. Madin Darby canine kidney (MDCK) cells transfected with the human MRP1 or MRP2 genes were used to assess whether several widely used pharmaceuticals are potential substrates by examining their differential toxicity, accumulation and efflux. Loratadine, an antihistamine, was 1.4‐fold less toxic to MRP1 cells and its retention was 1.3‐fold lower than that from MDCK control cells. Fosinopril, an angiotensin converting enzyme inhibitor, was 2.4‐fold less toxic and its retention was 4.5‐fold lower in MRP2‐transfected cells compared with control cells. To determine whether fosinopril contributed to a drug–drug interaction, fosinopril efflux was examined in vitro in combination with other known or suspected MRP2 substrates over a period of 20 min. When fosinopril was coincubated with desloratadine, loratadine or methotrexate, its retention was increased by 2‐, 4.7‐ and 2‐fold, respectively, which likely indicates that a drug–drug interaction is occurring. In vivo studies were conducted, in which FVB wild‐type and FVB/Mrp2?/? mice were dosed with fosinopril and the known MRP2 substrate methotrexate, and tissues collected after 1 h. In mice lacking Mrp2, drug levels were reduced in the intestine by 1.5‐fold, but increased in the liver, serum and kidneys, by 2.1‐, 2.9‐ and 3‐fold, respectively. These data suggest that, in the absence of Mrp2, fosinopril alters the retention of a second drug. These findings will help increase our understanding of the role that MRP2 plays in altering the retention and disposition of coadministered pharmaceuticals. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We investigated whether the species difference in the biliary excretion activity of some Mrp2 substrates was attributable to the intrinsic transport potential or the expression level of Mrp2, especially in rat and dog. Dog Mrp2 cDNA was isolated from beagle dog liver, and a vesicle transport study was performed using recombinant rat and dog Mrp2 expressed in insect Sf9 cells. The ATP-dependent transport of 17beta-estradiol 17-(beta-D-glucuronide) ([3H]E(2)17betaG) and leukotriene C4 ([3H]LTC4), normalized by the absolute protein expression level, was similar in both Mrp2s. The Mrp2 protein expression in dog liver was only 10% of that in rat liver and was comparable with the reported difference in the biliary excretion clearance of temocaprilat as Mrp2 substrate. In contrast to LTC4, unique transport kinetics for E(2)17betaG were evident in dog Mrp2. In addition to the high-affinity site with a K(m) value of 3.25 +/- 0.10 microM, which is similar to that in rat Mrp2 (4.81 +/- 1.21 microM), dog Mrp2 has an additional low-affinity site (>75 microM), which makes a major contribution to the transport of E(2)17betaG (65% of the total transport capacity at tracer concentration). In summary, the difference in the biliary excretion activity of Mrp2 substrates between rat and dog depends on the Mrp2 protein expression level rather than the intrinsic transport activity of the transporter molecules. The unique transport properties of glucuronide conjugates by dog Mrp2 may lead to the species difference involving the drug-drug interaction or drug-induced hyperbilirubinemia on the bile canalicular membrane.  相似文献   

12.
Epigallocatechin gallate (EGCG) has been shown to be protective in various experimental models of liver injury, although opposite effects have also been reported. Since its effect on biliary physiology has not been thoroughly investigated, the present study evaluated effect of EGCG on bile flow and bile acid homeostasis in rats. Compared to controls, EGCG treatment decreased bile flow by 23%. Hepatic paracellular permeability and biliary bile acid excretion were not altered by EGCG administration, but biliary glutathione excretion was reduced by 70%. Accordingly, the main glutathione transporter on the hepatocyte canalicular membrane, multidrug resistance-associated protein 2 (Mrp2), was significantly decreased at the protein level. EGCG administration also doubled plasma bile acid levels compared to controls. While protein levels of the main hepatic bile acid transporters were unchanged, the rate-limiting enzyme in the bile acid synthesis, Cyp7a1, was significantly increased by EGCG. Enhanced bile acid synthesis in these animals was also confirmed by a 2-fold increase in plasma marker 7α-hydroxy-4-cholesten-3-one. In contrast, EGCG markedly downregulated major bile acid transporters (Asbt and Ostα) and regulatory molecules (Shp and Fgf15) in the ileum. When EGCG was coadministered with ethinylestradiol, a potent cholestatic agent, it did not show any additional effect on the induced cholestasis. This study shows ability of EGCG to raise plasma bile acid concentrations, mainly through Cyp7a1 upregulation, and to decrease bile production through reduction in Mrp2-mediated bile acid-independent bile flow. In conclusion, our data demonstrate that under certain conditions EGCG may induce cholestasis.  相似文献   

13.
14.
The effects of a chronic aluminum (Al) exposure on biliary secretory function, with special emphasis on hepatic handling of non-bile salt organic anions, was investigated. Male Wistar rats received, intraperitoneally, either 27 mg/kg body weight of Al, as Al hydroxide [Al (+) rats], or the vehicle saline [Al (-) rats] three times a week for 3 months. Serum and hepatic Al levels were increased by the treatment (approximately 9- and 4-fold, respectively). This was associated with enhanced malondialdehyde formation (+110%) and a reduction in GSH content (-17%) and in the activity of the antioxidant enzymes catalase (-84%) and GSH peroxidase (-46%). Bile flow (-23%) and the biliary output of bile salts (-39%), cholesterol (-43%), and proteins (-38%) also decreased. Compartmental analysis of the plasma decay of the model organic anion bromosulphophthalein revealed that sinusoidal uptake and canalicular excretion of the dye were significantly decreased in Al (+) rats (-53 and -43%, respectively). Expression of multidrug resistance-associated protein 2 (Mrp2), the main, multispecific transporter involved in the canalicular excretion of organic anions, was also decreased (-40%), which was associated with a significant decrease in the cumulative biliary excretion of the Mrp2 substrate, dinitrophenyl-S-glutathione (-50%). These results show that chronic Al exposure leads to oxidative stress, cholestasis, and impairment of the hepatic handling of organic anions by decreasing both sinusoidal uptake and canalicular excretion. The alteration of the latter process seems to be causally related to impairment of Mrp2 expression. We have addressed some possible mechanisms involved in these deleterious effects.  相似文献   

15.
Multidrug resistance-associated proteins (Mrps) are a group of ATP-dependent efflux transporters for organic anions. Mrp2 and Mrp4 are co-localized to the apical (brush-border) membrane domain of renal proximal tubules, where they may function together in the urinary excretion of organic anions. Previous reports showed that urinary excretion of some organic anions is not impaired in transport-deficient (TR-) rats, which lack Mrp2, suggesting that up-regulation of other transporter(s) may compensate for the loss of Mrp2 function. The purpose of this study was to determine whether Mrp4 expression in kidney is altered in TR- rats. Mrp4 mRNA expression was quantified using the high-throughput branched DNA signal amplification assay. Mrp4 protein expression was determined by Western blot and immunohistochemical analysis. Mrp4 mRNA in kidney of TR- rats was 100% higher than normal Wistar rats. Western blot analysis showed a 200% increase in Mrp4 protein expression in kidney of the mutant rats compared to normal rats. Immunohistochemical analysis of Mrp4 protein demonstrated apical localization of Mrp4 on renal proximal tubules, and that the immunoreactivity was more intense in kidney sections from TR- rats than those from normal rats. In summary, the results of the present study demonstrate that renal Mrp4 expression is up-regulated in TR- rats, which may explain why urinary excretion of some organic anions remains normal in the mutant rats.  相似文献   

16.
Hyperbilirubinemia is a frequent side effect induced by long-term therapy with the antibiotic fusidate. The aim of this study was to elucidate the molecular mechanisms of fusidate-induced hyperbilirubinemia by investigating its influence on hepatic transport systems in the canalicular membrane. Using canalicular membrane vesicles from rat liver, we determined the effect of fusidate on the adenosine 5'-triphosphate (ATP)-dependent transport of substrates of the apical conjugate export pump, multi-drug resistance protein 2 (Mrp2, symbol Abcc2) and the bile salt export pump (Bsep, symbol Abcb11). Fusidate inhibited the ATP-dependent transport of the Mrp2 substrates 17beta-glucuronosyl estradiol and leukotriene C4, and the transport of cholyltaurine by Bsep with Ki values of 2.2+/-0.3, 7.6+/-1.3, and 5.5+/-0.8 microM, respectively. To elucidate the in vivo implication of these findings, the effect of fusidate treatment on the elimination of intravenously administered tracer doses of 17beta-glucuronosyl estradiol and cholyltaurine into bile was studied in rats. Treatment with fusidate (100 micromol/kg body weight) reduced the biliary excretion rate of 17beta-glucuronosyl [3H]estradiol and [3H]cholyltaurine by 75 and 80%, respectively. Extended treatment of rats with fusidate (100 micromol/kg body weight, three times daily i.p. for 3 days) reduced hepatic Mrp2 protein levels by 61% (P<0.001). Our data suggest that there are at least two different mechanisms involved in the impairment of transport processes and hepatobiliary elimination by fusidate, direct inhibition of transport of Mrp2 and Bsep substrates by competitive interaction and impairment by a decreased level of hepatic Mrp2.  相似文献   

17.
The multidrug resistance-associated protein (MRP) family plays a major role in the hepatic excretion of organic anions. The expression, localization, and function of Mrp2 (Abcc2), a canalicular multispecific organic anion transport protein, were studied in sandwich-cultured rat hepatocytes. The amount of Mrp2 protein remained constant in sandwich-cultured rat hepatocytes over 4 days in culture, but the molecular mass increased approximately 10 kDa from 190 to 200 kDa. Mrp2 was internalized initially after hepatocyte isolation and was gradually sorted to the canalicular membrane. Disposition of 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF), an Mrp2 substrate, confirmed the changes in Mrp2 localization. CDF was localized predominantly inside hepatocytes at day 0 and gradually localized to the canalicular domain over time in culture. By day 4 in culture, CDF was localized exclusively in the canalicular networks. Tunicamycin, an inhibitor of glycosylation, decreased the molecular mass and simultaneously impaired the trafficking of Mrp2 to the canalicular membrane. Treatment of lysates from both day 0 (Mrp2, 190 kDa) and day 4 (Mrp2, 200 kDa) sandwich-cultured rat hepatocytes with peptide N-glycosidase F, a deglycosylation agent, resulted in a band of 180 kDa, suggesting that Mrp2 from both day 0 and day 4 was glycosylated, but Mrp2 on day 4 was more glycosylated than on day 0. In conclusion, these data support the hypothesis that glycosylation of Mrp2 is responsible for the increase in molecular mass and may be involved in directing the canalicular localization of Mrp2 in sandwich-cultured rat hepatocytes over days in culture.  相似文献   

18.
Multidrug resistance-associated proteins 3 and 4 (Mrp3 and Mrp4) are expressed at much higher levels in female than male kidney. Sex steroids and sex-specific growth hormone (GH) secretion patterns often mediate gender-predominant gene expression. Thus, three models were used to investigate potential endocrine regulation of Mrp3 and Mrp4: (1) gonadectomized (GNX) mice with 17beta-estradiol (E2) or 5alpha-dihydroxytestosterone (DHT) replacement; (2) hypophysectomized (HPX) mice receiving E2, DHT, or simulated male-pattern (MP) or female-pattern (FP) GH secretion; (3) lit/lit mice, which have a spontaneous mutation in the growth-hormone releasing-hormone (GHRH) receptor, with simulated MP- or FP-GH secretion. GNX and HPX decreased Mrp3 mRNA levels compared with intact females. In both respective models E2 administration increased Mrp3 expression in GNX and HPX mice. DHT markedly repressed Mrp3 from GNX+placebo levels, however, this was not observed in the HPX model. In lit/lit mice, Mrp3 expression was lower than in wild-type controls, and MP-GH and FP-GH simulation slightly increased Mrp3 expression. Whereas GNX increased Mrp4 in males to female levels, HPX actually increased Mrp4 expression in both genders +375% and +66%, respectively. In both models DHT markedly repressed Mrp4. Furthermore, Mrp4 was higher in lit/lit than wild-type male mice, and simulation of MP-GH secretion suppressed female-predominant Mrp4 expression. In conclusion, these data indicate that E2 contributes to higher Mrp3 mRNA expression in females, yet a role for androgens in Mrp3 repression cannot be discounted. In contrast, Mrp4 mRNA is higher in females due to repression by both DHT and MP-GH secretion in males.  相似文献   

19.
目的考察茵栀黄颗粒对胆汁瘀积大鼠肝脏转运体多药耐药相关蛋白14(Mrp14(Mrp14)表达的影响。方法 Wistar雄性大鼠20只,随机分为4组,即正常组、模型组、对照组和茵栀黄组,每组5只。大鼠颈部皮下连续注射苯甲酸雌二醇[EB,5 mg/(kg·d)]造模。Western blot实验考察茵栀黄颗粒对肝脏转运体Mrp14)表达的影响。方法 Wistar雄性大鼠20只,随机分为4组,即正常组、模型组、对照组和茵栀黄组,每组5只。大鼠颈部皮下连续注射苯甲酸雌二醇[EB,5 mg/(kg·d)]造模。Western blot实验考察茵栀黄颗粒对肝脏转运体Mrp14的调节作用。结果与对照组相比,茵栀黄组肝细胞膜转运体Mrp14的调节作用。结果与对照组相比,茵栀黄组肝细胞膜转运体Mrp13的表达均显著增加(P<0.05),而Mrp4的表达差异无统计学意义(P>0.05)。结论茵栀黄颗粒能明显上调胆汁瘀积模型大鼠肝细胞膜转运体Mrp13的表达均显著增加(P<0.05),而Mrp4的表达差异无统计学意义(P>0.05)。结论茵栀黄颗粒能明显上调胆汁瘀积模型大鼠肝细胞膜转运体Mrp13的表达,但对Mrp4的表达无影响。  相似文献   

20.
Hepatic ischemia-reperfusion (IR) injury during liver transplantation can lead to cholestasis and remote organ dysfunction. Multidrug resistance-associated proteins (Mrps) are efflux transporters known to transport a diverse set of substrates, such as amphipathic chemicals, organic anions, and endogenous molecules. The purpose of this study was to determine the effect of hepatic IR injury on the expression of Mrps in rat liver and kidney. Male Sprague-Dawley rats were subjected to 60 min of partial hepatic ischemia. At various times after reperfusion (0, 3, 6, 24, and 48 h), the ischemic lobes were harvested as well as kidneys. RNA and protein expression of Mrps in livers and kidneys were determined by the branched DNA method, Western blot analysis, and tissue immunofluorescence. Mrp2 mRNA and protein expression in livers decreased after IR. Conversely, Mrp2 mRNA and protein expression in kidneys increased after IR. Mrp3 mRNA expression, and Mrp4 mRNA and protein expression in kidneys transiently increased after IR. The intensity of immunofluorescent staining of Mrp2 corresponded to changes in Mrp2 expression in livers and kidneys after IR as detected by Western blot analysis and was localized to the apical membrane domain in both tissues. These results demonstrate that after hepatic IR, downregulation of hepatic Mrp2 and upregulation of renal Mrp2 occur. These decreases in hepatic Mrp2 may contribute to cholestasis, yet increases in kidney may protect from oxidative stress and/or inflammation after hepatic IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号