首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following tissue damage or invasion by pathogens a number of soluble signals are generated to alert the immune system of the impending danger and initiate inflammation. Some danger signals are released from injured or dying cells. Once released, danger signals activate a autocrine/paracrine network that recruits inflammatory cells, stimulates cytokine production, promotes dendritic cell maturations and increases the antigen (Ag) presenting efficiency. These events also occurs in the central nervous system (CNS) where cytokines and cytokine‐releasing cells have a central role in spreading inflammation. P2 receptors of microglia are the focus of increasing interest, especially after they were shown to mediate chemotaxis, cytokine release and cell death in microglia. We propose that P2 receptors may function in microglia as sensors of the ATP/UTP concentration in the pericellular space, and therefore as sensors of danger signals in the CNS. Furthermore, microglia itself can release ATP when stimulated by inflammatory stimuli. Thus extracellular nucleotides may be included in the family of the early inflammatory mediators acting via P2 receptors to spread inflammation in the CNS. References
1. Ferrari D., Villalba M., Chiozzi P., Falzoni S., Ricciardi‐Castagnoli P. and Di Virgilio F. (1996) Mouse microglia cells express a plasma membrane pore gated by extracellular ATP. J. Immunol. 156 , 1531–1539. 2. Ferrari D., Chiozzi P., Falzoni S., Hanau S. and Di Virgilio F. (1997) Purinergic modulation of interleukin‐1B release from microglia cells stimulated with bacterial endotoxin. J. Exp. Med. 185 , 579–582.  相似文献   

2.
Graeber MB  Li W  Rodriguez ML 《FEBS letters》2011,585(23):3798-3805
There is increasing confusion about the meaning of the terms inflammation, neuroinflammation, and microglial inflammation. We aim in this review to achieve greater clarity regarding these terms, which are essential for our understanding of the role of microglia in CNS inflammatory conditions. The important concept of sterile inflammation is explained against the backdrop of classical inflammation, and its key differences from what researchers refer to when they use the terms neuroinflammation and microglial inflammation are illustrated. We propose to replace the term "neuroinflammation" with "microglial activation" or "CNS pseudo-inflammation", if microglial activation does not suffice. In addition, we recommend abandoning the terms "microglial inflammation" and "inflamed microglia" because of the lack of a clear concept behind them.  相似文献   

3.
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.  相似文献   

4.
The author summarizes the current literature on neurotransmitters (dopamine, noradrenaline, serotonin and histamine) acting through adenlyate cyclase and also those ating direcctly without the intermission of c-AMP. The criteria of receptor binding are also stressed. The characteristics of D1 and D2 dopaminergic, beta1 adrenergic, H1 and H2 histaminergic receptors, their localisation and specific antagonists resp. agonists are emphasized too. Finally a new model is presented where adenylate cyclase and ionophore share a common receptor.  相似文献   

5.
Taurine Interaction with Neurotransmitter Receptors in the CNS: An Update   总被引:3,自引:0,他引:3  
Taurine appears to have multiple functions in the brain participating both in volume regulation and neurotransmission. In the latter context it may exert its actions by serving as an agonist at receptors of the GABAergic and glycinergic neurotransmitter systems. Its interaction with GABAA and GABAB receptors as well as with glycine receptors is reviewed and the physiological relevance of such interactions is evaluated. The question as to whether local extracellular concentrations of taurine are likely to reach the threshold level for the pertinent receptor populations cannot presently be answered satisfactorily. Hence more sophisticated analytical methods are warranted in order to obtain a definite answer to this important question. Special issue dedicated to Dr. Simo S. Oja  相似文献   

6.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

7.
Intense ATP signaling through P2X7 purinergic receptors can lead to excitotoxicity, a feature which initiates neuronal demise in experimental paradigms relevant to ischemia and to traumatic injury. In addition, recent data provide evidence that oligodendrocytes also express P2X7 receptors that are activated under experimental pathological conditions involving white matter demise. Thus, this receptor subtype is a promising target for the development of new drugs to prevent white matter damage in acute and chronic diseases.  相似文献   

8.
Brain-resident macrophages (microglia) are key cellular elements in the preservation of tissue integrity. On the other hand, they can also contribute to the development of pathological events by causing an extensive and inappropriate inflammatory response. A growing number of reports indicate the involvement of nucleotides in the control of microglial functions. With this study on P2Y receptors in rat microglia, we want to contribute to the definition of their expression profile and to the characterisation of their signalling mechanisms leading to Ca2+ movements. Endogenous nucleotides, when applied at a concentration of 100 μM, elicited robust Ca2+ transients, thanks to a panel of metabotropic receptors comprising mainly P2Y2, P2Y6 and P2Y12 subtypes. The involvement of P2Y12 receptors in Ca2+ responses induced by adenine nucleotides was confirmed by the pharmacological and pertussis toxin sensitivity of the response induced by adenosine diphosphate (ADP). Beside the G protein involved, Gi and Gq respectively, adenine and uracil nucleotides differed also for induction by the latter of a capacitative Ca2+ plateau. Moreover, when applied at low (sub-micromolar) concentrations with a long-lasting challenge, uracil nucleotides elicited oscillatory Ca2+ changes with low frequency of occurrence (≤1 min−1), sometimes superimposed to an extracellular Ca2+-dependent sustained Ca2+ rise. We conclude that different patterns of Ca2+ transients are induced by low (i.e., oscillatory Ca2+ activity) compared to high (i.e., fast release followed by sustained raise) concentrations of nucleotides, which can suggest different roles played by receptor stimulation depending not only on the type but also on the concentration of nucleotides.  相似文献   

9.
Microglia are the resident phagocytes of the brain that are responsible for the clearance of injured neurons, an essential step in subsequent tissue regeneration. How death signals are controlled both in space and time to attract these cells toward the site of injury is a topic of great interest. To this aim, we have used the optically transparent zebrafish larval brain and identified rapidly propagating Ca2+ waves that determine the range of microglial responses to neuronal cell death. We show that while Ca2+-mediated microglial responses require ATP, the spreading of intercellular Ca2+ waves is ATP independent. Finally, we identify glutamate as a potent inducer of Ca2+-transmitted microglial attraction. Thus, this real-time analysis reveals the existence of a mechanism controlling microglial targeted migration to neuronal injuries that is initiated by glutamate and proceeds across the brain in the form of a Ca2+ wave.  相似文献   

10.
11.
12.
Most of what we know about the neural basis of fear has been unravelled by studies using associative fear learning [1]. However, many animal species are able to use social cues to recognize threats [2,3], a defence mechanism that may be less costly than learning from self-experience. Most studies in the field have focused on species-specific signals, such as alarm calls or pheromones, remaining unclear whether more generic cues can mediate this process. Here we report that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator cage-mate display fear responses. Having tested a multitude of cues, we found that observer rats respond to an auditory cue which signals the sudden immobility of the demonstrator rat - the cessation of the sound of motion. As freezing is a pervasive fear response in animals [4,5], silence may constitute a truly public cue used by a variety of animals in the ecosystem to detect impeding danger.  相似文献   

13.
Purinoceptor (P2X and P2Y) mediated Ca2+ signaling in cultured human microglia was studied using Ca2+ sensitive fluorescence microscopy. ATP (at 100 microM) induced a transient increase in [Ca2+]i in both normal and Ca(2+)-free solution suggesting a primary contribution by release from intracellular stores. This conclusion was further supported by the failure of ATP to cause a divalent cationic influx in Mn2+ quenching experiments. However, when fluorescence quenching was repeated after removal of extracellular Na+, ATP induced a large influx of Mn2+, indicating that inward Na+ current through a non-selective P2X-coupled channel may normally suppress divalent cation influx. Inhibition of Mn2+ entry was also found when microglia were depolarized using elevated external K+ in Na(+)-free solutions. The possibility of P2X inhibition of Ca2+ influx was then investigated by minimizing P2X contributions of purinergic responses using either the specific P2Y agonist, ADP-beta-S in the absence of ATP or using ATP combined with PPADS, a specific inhibitor of P2X receptors. In quenching studies both procedures resulted in large increases in Mn2+ influx in contrast to the lack of effect observed with ATP. In addition, perfusion of either ATP plus PPADS or ADP-beta-S alone caused a significantly enhanced duration (about 200%) of the [Ca2+]i response relative to that induced by ATP. These results show that depolarization induced by P2X-mediated Na+ influx inhibits store-operated Ca2+ entry resulting from P2Y activation, thereby modulating purinergic signaling in human microglia.  相似文献   

14.
15.
16.
17.
The ability of human cytomegalovirus (HCMV) to infect an extensive range of cell types has complicated efforts to identify cellular receptors for this significant pathogen. Recent findings demonstrate that epidermal growth factor receptor (EGFR) serves also as a receptor for HCMV. Additional evidence has shown that HCMV entry occurs in concert with immune detection through toll-like receptors. Here, the implications of EGFR activation, the existence of other receptors and the coordination of entry with the innate sensing are discussed.  相似文献   

18.
Membrane‐less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse‐specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long‐distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.  相似文献   

19.
Lu ZM  Xie F  Fu H  Liu MG  Cao FL  Hao J  Chen J 《Neurochemical research》2008,33(10):2085-2091
A recent report from our laboratory shows that subcutaneous (s.c.) injection of melittin could induce persistent spontaneous nociception (PSN) and primary thermal or mechanical hyperalgesia. However, the exact peripheral mechanisms underlying melittin-induced multiple pain-related behaviors remain unclear. In this study, behavioral tests combined with pharmacological manipulations were used to explore potential roles of local P2X and P2Y receptors in melittin-induced inflammatory pain and hyperalgesia. Post-treatment of the primary injury site with s.c. injection of A-317491 (a potent P2X3/P2X2/3 receptor antagonist) and Reactive Blue 2 (a potent P2Y receptor antagonist) could significantly suppress the development of melittin-evoked PSN and hypersensitivity (thermal and mechanical). Our control experiments demonstrated that local administration of either antagonist into the contralateral hindpaw produced no significant effect on any kind of pain-associated behaviors. Taken together, these data indicate that activation of P2X and P2Y receptors might be essential to the maintenance of melittin-induced primary thermal and mechanical hyperalgesia as well as on-going pain. Z.-M. Lu and F. Xie are contributed equally to the work. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

20.
Abstract

ATP exerts at least 2 actions on arterial endothelial cells: it stimulates the release of endothelium-derived relaxing factor, a still unidentified vasodilator, and of prostacyclin, a potent inhibitor of platelet aggregation. A study of agonist specificity indicates that these responses are mediated by P2-purinergic receptors. We have now demonstrated that in these cells, the P2-receptors are coupled to a phospholipase C hydrolysing phospha-tidylinositol-bisphosphate and that this coupling involves a pertussis toxin-sensitive GTP-binding regulatory protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号