首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of Pd(PPh3)4 with 2‐bromo‐4‐methylpyridine, C5H3N(CH3)Br, in dichloromethane at ?20 °C causes the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(CH3)}(Br)], 2 , by substituting two triphenylphosphine ligands. In a dichloromethane solution of complex 2 at room temperature for 3 h, it undergoes displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐C5H3N(CH3)}2, 3 , in which the two 4‐methylpyridine ligands coordinated through carbon to one metal center and bridging the other metal through the nitrogen atom. Complexes 2 and 3 are characterized by X‐ray diffraction analyses.  相似文献   

2.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

3.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

4.
The transparent dark orange compounds Cs2[Pd(N3)4] and Rb2[Pd(N3)42/3H2O are synthesized by reaction of the respective binary alkali metal azides with K2PdCl4 in aqueous solutions. According to single‐crystal X‐ray diffraction investigations, the novel ternary azidopalladates(II) crystallize in the monoclinic space group P21/c (no. 14) with a = 705.7(2) pm, b = 717.3(2) pm, c = 1125.2(5) pm, β = 104.58(2)°, mP30 for Cs2[Pd(N3)4] and a = 1041.4(1) pm, b = 1292.9(2) pm, c = 1198.7(1) pm, β = 91.93(1)°, mP102 for Rb2[Pd(N3)42/3H2O, respectively. Predominant structural features of both compounds are discrete [PdII(N3)4]2– anions with palladium in a planar coordination by nitrogen, but differing in point group symmetries., The vibrational spectra of the compounds are analyzed based on the idealized point group C4h of the spectroscopically relevant unit, [Pd(N3)4]2– taking into account the site symmetry splitting due to the symmetry reduction in the solid phase.  相似文献   

5.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   

6.
The first doubly‐bridged thiocarbamoyl metal complex [Mo(Cl)(CO)2(PPh3)]212:μ‐SCNMe2)2 ( 2 ) was formed from stirring [Mo(CO)22‐SCNMe2)(PPh3)2Cl] ( 1 ) in dichloromethane at room temperature. Complex 2 is a dimer with each thiocarbamoyl unit coordinating through sulfur and carbon to one metal center and bridging both metals through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

7.
Treatment of N‐heterocyclic silylene Si[N(tBu)CH]2 ( 1 ) and [(η3‐C3H5)PdCl]2 in toluene led to the formation of the mononuclear complex (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl ( 3 ), the silicon analogue to N‐heterocyclic carbene complex (η3‐C3H5)Pd{C[N(tBu)CH]2}Cl ( 2 ). Complex 3 was characterized with 1H NMR and 13C NMR. Investigation shows that (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl is an active catalyst for Heck coupling reaction of styrene with aryl bromides.  相似文献   

8.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

9.
Treatment of Pt(PPh3)4 with N,N‐dimethylthiocarbamoyl chloride, Me2NC(=S)Cl, in dichloromethane at ?20 °C processes the oxidative addition reaction to produce platinum complex [Pt(PPh3)21‐SCNMe2)(Cl)], 2 with releasing two triphenylphosphine molecules. The 31P{1H} NMR spectra of complex 2 shows the dissociation of the triphenylphosphine ligand to form diplatinum complex [Pt(PPh3)Cl]2(μ,η2‐SCNMe2)2, 3 in which the two SCNMe2 ligands coordinated through carbon to one metal center and bridging the other metal through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

10.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

11.
Bis(tetraphenylphosphonium) hexachloridodiberyllate, (Ph4P)2[Be2Cl6], reacts with excess trimethylsilyl‐iso‐thiocyanate to give a mixture of colourless single crystals of (Ph4P)2[Be(NCS)4] ( 1 ) and (Ph4P)4[{Be2(NCS)4(μ‐NCS)2}{Be2(NCS)6(μ‐H2N2C2S2)}] ( 2 ), which can be separated by selection. Both complexes were characterized by X‐ray diffraction. Compound 1 can be prepared without by‐products by treatment of (Ph4P)2[BeCl4] with excess Me3SiNCS in dichloromethane solution. 1 : Space group I41/a, Z = 4, lattice dimensions at 100(2) K: a = b = 1091.2(1), c = 3937.1(3) pm, R1 = 0.0474. The [Be(NCS)4]2– ion of 1 forms tetragonally distorted tetrahedral anions with Be–N distances of 168.4(2) pm and weak intermolecular S ··· S contacts along [100] and [010]. 2 ·4CH2Cl2: Space group P , Z = 1, lattice dimensions at 100(2) K: a = 919.5(1), b = 1248.3(1), c = 2707.0(2) pm, α = 101.61(1) °, β = 95.08(1) °, γ = 94.52(1) °, R1 = 0.103. Compound 2 contains two different anionic complexes in the ratio 1:1. In {Be2(NCS)4(μ‐NCS)2}2–, the beryllium atoms are connected by (NCS) bridging groups forming centrosymmetric eight‐membered Be2(NCS)2 rings with distances Be–N of 168(1) pm and Be–S of 235.2(9) pm. The second anion {Be2(NCS)6(μ‐H2N2C2S2)}2– consists of two {Be(NCS)3} units, which are linked by the nitrogen atoms of the unique dimeric cyclo‐addition product of HNCS with Be–N distances of 179(1) pm.  相似文献   

12.
Reaction of 2, 4, 6‐tri‐tert‐butylphenol ( 1 ) with di‐n‐butylmagnesium in the molar ratio 1:1 allows the synthesis of {(nBu)Mg(μ‐OR)2Mg(nBu)} ( 2 ) (R = 2, 4, 6‐tBu3C6H2), which reacts with excess 1 to give the homoleptic alcoholate complex {(RO)Mg(μ‐OR)2Mg(OR)} ( 3 ) (R = 2, 4, 6‐tBu3C6H2). The structures of 2 and 3 were determined by X‐ray crystallography.  相似文献   

13.
The new ligand‐deficient chain polymer [Hg(μ‐Br)2(3,5‐Br2py)] has been obtained in form of single crystals by thermolysis of the ligand‐rich [Hg(μ‐Br)2(3,5‐Br2py)2] at 180 °C at ambient pressure. From this reaction, high quality crystals of the product are directly accessible. The title compound features HgII cations in a distorted square‐pyramidal coordination; their metal centers aggregate via edge‐sharing with asymmetric halide bridges to chains in which all apical N donor ligands are oriented to the same side of the [Hg(μ‐Br)2] backbone. The new polymer cannot be prepared by stoichiometric reaction in solution.  相似文献   

14.
X‐ray vision : Single‐crystal XRD experiments (see picture) reveal the excited‐state structure of the photomagnetic heterobimetallic title complex. The system shows a decrease in all the iron–ligand bond lengths, suggesting that photoexcitation involves a ligand‐to‐metal charge transfer or a change in the superexchange coupling between the metal centers.

  相似文献   


15.
From hydrothermal synthesis needle‐shaped crystals of [Ca3(C6H5O7)2(H2O)2] · 2H2O were obtained. The crystal structure was determined by single‐crystal X‐ray experiments and confirmed by powder data (P$\bar{1}$ (no. 2) a = 5.9466(4), b = 10.2247(8), c = 16.6496(13) Å, α = 72.213(7)°, β = 79.718(7)°, γ = 89.791(6)°, V = 947.06(13) Å3, Z = 2, R1 = 0.0426, wR2 = 0.1037). The structure was obtained from pseudo merohedrically polysynthetic twinned crystals using a combined data collection approach and refinement processes. The observed three‐dimensional network is dominated by eightfold coordinated Ca2+ cations linked by citrate anions and hydrogen bonds between two non‐coordinating crystal water molecules and two coordinating water molecules.  相似文献   

16.
Tetra(N‐methylimidazole)‐beryllium‐di‐iodide, [Be(Me‐Im)4]I2 ( 1 ), was prepared from beryllium powder and iodine in N‐methylimidazole suspension to give yellow single crystal plates, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes tetragonally in the space group I 2d with four formula units per unit cell. Lattice dimensions at 100(2) K: a = b = 1784.9(1), c = 696.2(1) pm, R1 = 0.0238. The structure consists of homoleptic dications [Be(Me‐Im)4]2+ with short Be–N distances of 170.3(3) pm and iodide ions with weak interionic C–H ··· I contacts. Experiments to yield crystalline products from reactions of N‐methylimidazole with BeCl2 and (Ph4P)2[Be2Cl6], respectively, in dichloromethane solutions were unsuccessful. However, single crystals of [Be3(μ‐OH)3(Me‐Im)6]Cl3 ( 2 ) were obtained from these solutions in the presence of moisture air. According to X‐ray diffraction studies, two different crystal individuals ( 2a and 2b ) result, depending on the starting materials BeCl2 and (Ph4P)2[Be2Cl6], respectively [ 2a : Space group P21/n, Z = 4; 2b : Space group P , Z = 2]. As a side‐product from the reaction of N‐methylimidazole with (Ph4P)2[Be2Cl6] single crystals of (Ph4P)Cl·CH2Cl2 ( 3 ) were identified crystallographically (P21/n, Z = 4) which are isotypical with the corresponding known bromide (Ph4P)Br·CH2Cl2.  相似文献   

17.
Three new triruthenium clusters, Ru3(CO)9(μ‐arphos)AsPh3 ( 1 ), Ru3(CO)9(μ‐arphos)As(m‐C6H4Me)3 ( 2 ), and Ru3(CO)9(μ‐arphos)As(p‐C6H4Me)3 ( 3 ) were synthesized via thermal reactions of Ru3(CO)10(μ‐arphos) with different tertiary arsine ligands [AsPh3, As(m‐C6H4Me)3, As(p‐C6H4Me)3]. All these complexes were fully characterized by elemental analysis, FT‐IR, NMR spectroscopy, and single‐crystal X‐ray diffraction.  相似文献   

18.
The reaction of the rifle cyclic complex (1) with sodium amalgam in THF resulted in the expected cleavage of the Fe-Fe bond to afford his-sodium salt ( Me2SiSiMe2 ) [η^5-C5H4Fe(CO)2]2 (4). The latter was not isolated and was used directly to react with MeI, PhCH2Cl, CH3C(O)Cl, PhC(O)Cl,Cy3SnCl (Cy= cyclohexyl) or Ph3SnCl to afford corresponding ring-opened derivatives (Me2SiSiMe2) [η^5-C5H4Fe(CO)2]2 [5, R=Me; 6, R=PhCH2; 7, R=CH3C(O); 8, R=PhC(O); 9, R = Cy3Sn or 10, R = Ph3Sn ]. The crystal and molecular structures of 10 were determined by X-ray diffraction analysis. The molecule took the desired ant/ conformation around the Si-Si bond. The length of the Si--Si bond is 0.2343(3)nm, which is essentially identical to that in the cyclic structure of 1[0.2346(4) tun]. This result unambiguously demonstrates that the Si--Si bond in the cyclic structure of 1 is not subject to obvious strain.  相似文献   

19.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

20.
By condensing 2‐aminobenzothiazole with 2‐hydroxy‐1‐naphthaldehyde, 2‐hydroxybenzaldehyde, 4‐methoxybenzaldehyde, 4‐hydroxybenzal‐dehyde, benzaldehyde and 4‐dimethylaminobenzaldehyde, and five Schiff bases Ia‐Ie are prepared. Also, two Schiff bases IIa and IIb are prepared by condensation of 2‐amino‐3‐hydroxypyridine with 2‐hydroxy‐1‐naphthaldehyde and 2‐hydroxybenzaldehyde. The 1H NMR, IR and UV/Vis spectra of these seven Schiff bases are investigated. The signals of the 1H NMR spectra as well as the important bands in the IR spectra are considered and discussed in relation to molecular structure. The UV/Vis absorption bands in ethanol are assigned to the corresponding electronic transitions and the electronic absorption spectra of Schiff bases Ib and IIb are studied in organic solvents of different polarities. The UV/Vis absorption spectra of 2‐amino‐3‐hydroxypyridine Schiff bases IIa and IIb are investigated in buffer solutions of different pH values containing 5% (v/v) methanol, and the results are utilized for the determination of pKa and ΔG* of the ionization of the phenolic OH‐groups. The fluorescence spectra of IIa and IIb are studied in organic solvents of different polarities. The obtained spectral results are confirmed by some molecular calculations using the atom super position and electron delocalization molecular orbital theory for the Schiff base IIb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号