首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

2.
In this work, the effects of Y2O3/MgO ratio on the densification behavior, phase transformation, microstructure evolution, mechanical properties, and thermal conductivity of Si3N4 ceramics were investigated. Densified samples with bimodal microstructure could be obtained by adjusting the ratio of Y2O3/MgO. It was found that a low Y2O3/MgO ratio facilitated the densification of Si3N4 ceramics while a high Y2O3/MgO ratio benefited the phase transformation of Si3N4 ceramics. Best mechanical properties (flexural strength of 875 MPa, and fracture toughness of 8.25 MPa·m1/2, respectively) and optimal thermal conductivity of 98.04W/(m·K) were achieved in the sample fabricated with Y2O3/MgO ratio of 3:4 by sintering at 1900°C for 4 h.  相似文献   

3.
High-purity silicon powder is used as the starting material for cost-effective preparation of silicon nitride ceramics with both high thermal conductivity and excellent mechanical properties using RE2O3 (RE=Y, La or Er) and MgO as sintering additives. Nitridation is a key procedure that would affect the properties of green bodies and the sintered samples. The β: (α+β) ratio can be increased as the samples nitrided at 1450ºC and a large amount of long rod-like β-Si3N4 grains were developed in the samples. It was found that the addition of Er2O3-MgO could help to improve the mechanical properties of the sintered Si3N4 ceramics, the thermal conductivity, flexural strength and fracture toughness of the sample were 90 W/(m∙K), 953±28.3 MPa and 10.64±0.61 MPa·m1/2, respectively. The RE3+ species with larger ionic radius tended to increase the oxygen of nitrided samples and decrease N/O ratio (triangle grain boundary) of sintered samples.  相似文献   

4.
Si3N4/O′–SiAlON composite ceramics with superior oxidation resistance properties were fabricated by a repeated sintering method. The effects of sintering time on the phase evolution, microstructure, and oxidation resistance properties of the Si3N4/O′–SiAlON composite ceramics were investigated. The results indicated that the content of the O′–SiAlON phase and the densification of Si3N4/O′–SiAlON composite ceramics increased after two-time sintering. Furthermore, the thickness of the oxide layer of the Si3N4/O′–SiAlON composite ceramics after oxidation at 1100–1500°C for 30 h was not significant. Compared to the oxidation weight gain after the one-time sintering process, the oxidation weight gain of Si3N4/O′–SiAlON composite ceramics was 0.432 mg/cm2 after two-time sintering when oxidized at 1500 C for 30 h, which was reduced by 43.3%. The mechanism of the improved oxidation resistance properties was ascribed to the formation of more O′–SiAlON and the enhancement of the densification.  相似文献   

5.
《Ceramics International》2021,47(18):25689-25695
The high-temperature mechanical and dielectric properties of Si2N2O ceramics are often limited by the introduction of a sintering aid. Herein, dense Si2N2O was prepared at 1700 °C by hot-pressing oxidized amorphous Si3N4 powder without sintering additives. A homogeneous network with short-range order and a SiN3O structure was formed in the oxidized amorphous Si3N4 powder during the hot-pressing process. Si2N2O crystals preferentially nucleated at positions within the SiN3O structure and grew into rod-like and plate-like grains. Fully dense ceramics with mainly crystalline Si2N2O and some residual amorphous phases were obtained. The as-prepared Si2N2O possessed a good flexural strength of 311 ± 14.9 MPa at 1400 °C, oxidation resistance at 1500 °C, and a low dielectric loss tangent of less than 5 × 10−3 at 1000 °C.  相似文献   

6.
Porous silicon nitride (Si3N4) ceramics were fabricated by self-propagating high temperature synthesis (SHS) using Si, Si3N4 and sintering additive as raw materials. Effects of different types of sintering additives with varied ionic radius (La2O3, Sm2O3, Y2O3, and Lu2O3) on the phase compositions, development of Si3N4 grains and flexural strength (especially high-temperature flexural strength) were researched. Si3N4 ceramics doped with sintering additive of higher ionic radius had higher average aspect ratio, improved room-temperature flexural strength but degraded high-temperature flexural strength. Besides, post-heat treatment (PHT) was conducted to crystallize amorphous grain boundary phase thus improving the creep resistance and high-temperature flexural strength of SHS-fabricated Si3N4 ceramics. Excellent high-temperature flexural strength of 140 MPa~159 MPa and improved strength retention were achieved after PHT at 1400 °C.  相似文献   

7.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

8.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

9.
Silicon nitride (Si3N4) ceramics doped with two different sintering additive systems (Al2O3–Y2O3 and Al2O3–Yb2O3) were prepared by hot-pressing sintering at 1800℃ for 2 h and 30 MPa. The microstructures, nano-indentation test, and mechanical properties of the as-prepared Si3N4 ceramics were systematically investigated. The X-ray diffraction analyses of the as-prepared Si3N4 ceramics doped with the two sintering additives showed a large number of phase transformations of α-Si3N4 to β-Si3N4. Grain size distributions and aspect ratios as well as their effects on mechanical properties are presented in this study. The specimen doped with the Al2O3–Yb2O3 sintering additive has a larger aspect ratio and higher fracture toughness, while the Vickers hardness is relatively lower. It can be seen from the nano-indentation tests that the stronger the elastic deformation ability of the specimens, the higher the fracture toughness. At the same time, the mechanical properties are greatly enhanced by specific interlocking microstructures formed by the high aspect ratio β-Si3N4 grains. In addition, the density, relative density, and flexural strength of the as-prepared Si3N4 ceramics doped with Al2O3–Y2O3 were 3.25 g/cm3, 99.9%, and 1053 ± 53 MPa, respectively. When Al2O3–Yb2O3 additives were introduced, the above properties reached 3.33 g/cm3, 99.9%, and 1150 ± 106 MPa, respectively. It reveals that microstructure control and mechanical property optimization for Si3N4 ceramics are feasible by tailoring sintering additives.  相似文献   

10.
Si2N2O ceramics were prepared by plasma activated sintering using nanosized amorphous Si3N4 powder without sintering additives within a temperature range of 1400°C–1600°C in vacuum. A mixed Si–N4?n–On (n = 0, 1…4) amorphous structure was formed in the process of sintering, and Si2N2O crystals were nucleated where the local structure was similar with Si2N2O. After sintering at 1600°C, the Si2N2O ceramic was composed of elongated plate‐like Si2N2O grains and amorphous phase. The Si2N2O grains showed a width of less than 100 nm and a very high aspect ratio.  相似文献   

11.
The aim of this study was to evaluate the mechanical properties and coloration of silicon nitride ceramics in the presence of RE2O3 (RE = Nd, Eu or Dy). Dense Si3N4 ceramics were prepared by gas pressure sintering at 1800 °C for 2 h. XRD analysis confirmed the complete transformation of α-Si3N4 to β-Si3N4. The fracture toughness and flexure strengths were 11.93 ± 0.56 MPa·m1/2, 667 ± 40.98 MPa with the addition of Eu2O3 (SE). Base on the SEM image, the pull-out, bridging and deflection of large grains were observed and contributed to the increase in mechanical properties. The chromaticity of sintered bodies was measured using a spectrophotometer. The color difference of the ceramics is due to the formation of different color developing compounds according to the EDS. Results showed that high-toughness and colorful Si3N4 ceramics can be prepared using YAG:Ce3+ as sintering additive and RE2O3 as the colorant.  相似文献   

12.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

13.
《Ceramics International》2021,47(19):27324-27333
In order to reduce the difficulty of preparing binder-less cemented carbide and further broaden its application prospects, tungsten carbide toughened by in situ elongated β-Sialon grains was developed via sintering ball-milled WC and α-Si3N4 powders using Al2O3–ZrO2 as a sintering aid and transformation additive. The two-step spark plasma sintering of the mixture at 1650 °C with dwelling at 1500 °C for 10 min was conducted under 30 MPa uniaxial pressure, and the densification behaviors, phase transformations, mechanical properties, and microstructures of the produced composites were investigated. The addition of Al2O3–ZrO2 reduced the initial temperature of the densification process by approximately 100 °C and its final temperature by 200 °C (compared with the densification temperatures of pure WC and Si3N4 materials) and fully transformed α-Si3N4 to Sialon (Si–Al–O–N) phases. Microstructural characterization data showed that the WC matrix contained homogeneously distributed equiaxed and elongated β-Si5AlON7 grains. The WC composites containing in situ elongated β-Sialon grains exhibited an optimal hardness of 18.93 ± 0.03 GPa and enhanced fracture toughness of 10.43 ± 0.27 MPa m1/2. The toughening mechanism of the β-Sialon phase involved the pull-out of elongated grains and crack bridging.  相似文献   

14.
《Ceramics International》2023,49(13):21815-21824
Silicon nitride (Si3N4) ceramics, with different ratios of fine and coarse α-Si3N4 powders, were prepared by spark plasma sintering (SPS) and heat treatment. Further, the influence of coarse α-Si3N4 powder on densification, microstructure, mechanical properties, and thermal behavior of Si3N4 ceramics was systematically investigated. Compared with fine particles, coarse particles exhibit a slower phase transition rate and remain intact until the end of SPS. The remaining large-sized grains of coarse α-Si3N4 induce extensive growth of neighboring β-Si3N4 grains and promote the development of large elongated grains. Noteworthy, an appropriate number of large elongated grains distributed among fine-grained matrix forms bimodal microstructural distribution, which is conducive to superior flexural strength. Herein, Si3N4 ceramics with flexural strength of 861.34 MPa and thermal conductivity of 65.76 W m−1 K−1 were obtained after the addition of 40 wt% coarse α-Si3N4 powder.  相似文献   

15.
《Ceramics International》2019,45(12):15128-15133
In this study, highly dense Si3N4 ceramics with excellent mechanical properties were fabricated using Mg2Si as a sintering additive by plasma-activated sintering at 1400–1500 °C. The effects of the sintering temperature and content of Mg2Si on the densification, microstructures, and mechanical properties of the Si3N4 ceramics were investigated. The mechanism responsible for the effect of Mg2Si in the promotion of the sinterability of Si3N4 is discussed. The results showed that the addition of Mg2Si could effectively remove the oxide layers on the Si3N4 particles and form a liquid phase during the sintering, promoting the densification and phase transition of the Si3N4 ceramics. The Si3N4 ceramic sintered at 1450 °C with 6.0 wt% of Mg2Si exhibited the maximum strength of 1050 MPa.  相似文献   

16.
Si3N4 ceramics with different BaTiO3 contents have been fabricated by pressureless sintering in a N2 atmosphere at 1680°C for 2 h. Al2O3 and Nd2O3 were used as sintering additives to promote the densification of Si3N4 ceramics. The effect of BaTiO3 addition on the densification, mechanical properties, phase compositions, microstructure, and dielectric properties of Si3N4 ceramics was investigated. The relative density and flexural strength of Si3N4 ceramics increased with the addition of BaTiO3 up to 15 wt% and then decreased, while the dielectric constant increased continuously as the BaTiO3 contents increased. The dielectric constant of Si3N4 ceramics can be tailored in the range from 8.42 to 12.96 by the addition of 5 wt%‐20 wt% BaTiO3. Meanwhile, these Si3N4 ceramics all had flexural strength higher than 500 MPa.  相似文献   

17.
Two kinds of sintering additives based on the polysiloxanes or polysilazanes filled with nano‐sized powders as SiAlON precursors were tested for the densification of Si3N4‐based ceramics. The results showed that both systems can be successfully used as additives for the preparation of Si3N4 ceramics with favorable mechanical characteristics. The ceramics were sintered with 18 wt% of preceramic polymer‐based mixture, and good fracture resistance and high hardness values were obtained after sintering in optimized conditions (temperature, dwell time, nitrogen pressure). Higher densification temperatures and longer holding times were required for sintering of samples with polysilazane‐based precursors. The best toughness values were approximately 5 MPa·m0.5, while the highest hardness was about 19 GPa. The differences in mechanical properties of the prepared composites can be related to the phase composition, microstructure and different chemical bonds present in the ceramic residue generated upon pyrolysis and final densification.  相似文献   

18.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

19.
《Ceramics International》2016,42(3):3745-3750
The process of densification and development of the microstructure of mullite–ZrO2/Y2O3 ceramics from mixture of Al2O3, SiO2, ZrO2 and Y2O3 by gradually adding of α–β Si3N4 nanopowder from 1 to 5 wt% by traditional and spark plasma sintering were investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and some ceramic and mechanical properties. The processes of DTA for all samples are characterised by a low-pitched endo-effect, when gradual mullite formation and noticeable densification at temperatures of 1200–1400 °C is started. It is testified by shrinkage and density both for traditionally and by SPS-sintered samples. The influence of the Si3N4 additive on the density characteristics is insignificant for both sintering cases. For SPS samples, the density reaches up to 3.33 g/cm3, while for traditionally sintered samples, the value is 2.55 g/cm3, and the compressive strength for SPS grows with Si3N4 additives, reaching 600 N/mm2. In the case of traditional sintering, it decreases to approximately 100 N/mm2. The basic microstructure of ceramic samples sintered in a traditional way and by SPS is created from mullite (or pseudo-mullite) crystalline formations with the incorporation of ZrO2 grains. The microstructure of ceramic samples sintered by SPS shows that mullite crystals are very densely arranged and they do not have the characteristic prismatic shape. The traditional sintering process causes the creation of voids in the microstructure, which, with an increasing amount of Si3N4 additive, are filled with mullite crystalline formations.  相似文献   

20.
Porous Si3N4 ceramics were fabricated by liquid-phase sintering with a Yb2O3 sintering additive, and the microstructure and mechanical properties of the ceramics were investigated, as a function of porosity. Low densification was achieved using a lower Yb2O3 additive content. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions. A high porosity, ∼40–60%, with β-Si3N4 grain development, was obtained by adjusting the additive content. Superior mechanical properties, as well as strain tolerance, were obtained for porous ceramics with a microstructure of fine, fibrous grains of a bimodal size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号