首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple electrochemical deposition technique is used to synthesize both two-dimensional (nanowall) and one-dimensional (nanowire) ZnO nanostructures on indium-tin-oxide-coated glass substrates at 70°C. By fine-tuning the deposition conditions, particularly the initial Zn(NO3)2·6H2O electrolyte concentration, the mean ledge thickness of the nanowalls (50–100 nm) and the average diameter of the nanowires (50–120 nm) can be easily varied. The KCl supporting electrolyte used in the electrodeposition also has a pronounced effect on the formation of the nanowalls, due to the adsorption of Cl ions on the preferred (0001) growth plane of ZnO and thereby redirecting growth on the (10[`1] \bar{1} 0) and (2[`1] \bar{1} [`1] \bar{1} 0) planes. Furthermore, evolution from the formation of ZnO nanowalls to formation of nanowires is observed as the KCl concentration is reduced in the electrolyte. The crystalline properties and growth directions of the as-synthesized ZnO nanostructures are studied in details by glancing-incidence X-ray diffraction and transmission electron microscopy.  相似文献   

2.
ZnO nanorods (NRs) were hydrothermally synthesized by using equimolar zinc nitrate hydrate (Zn(NO3)2 [sdot] 6H2O) and hexamethylenetetramine (C6H12N4) solutions. The shape of the nanostructures, obtained by aqueous method, was greatly influenced by the growth temperature and the molar concentrations. NRs grown at higher temperature (90°C) have rounded tips, whereas nanostructures of hexagonal flat-end shape were obtained at 75°C. Hardly any nanostructures were observed by further reducing the temperature to 60°C. In addition, solutions with higher molarity favored the appearance of nanoflowers. Scattered ZnO NRs were observed on silicon substrate, whereas aligned ZnO nanowires (NWs) 50–70 nm in diameter were obtained at 75°C by introducing sputtered ZnO film as a seed layer. High-resolution transmission electron microscopy (HRTEM) confirmed the growth of ZnO nanowires along [001] direction. A band-edge luminescence along with a broad visible spectrum was observed for the ZnO nanowires.  相似文献   

3.
ZnO was grown on sapphire substrate by metal–organic chemical vapor deposition using the diethylzinc (DEZn) and oxygen (O2) as source chemicals at 500 °C. Influences of the chamber pressure and O2/DEZn ratio on the ZnO structural properties were discussed. It was found that the chamber pressure has significant effects on the morphology of ZnO and could result in various structures of ZnO including pyramid-like, worm-like, and columnar grain. When the chamber pressure was kept at 10 Torr, the lowest full width at half-maximum of ZnO (002) of 175 arc second can be obtained. On the other hand, by lowering the DEZn flow rate, the crystal quality of ZnO can be improved. Under high DEZn flow rate, the ZnO nanowall-network structures were found to grow vertically on the sapphire substrate without using any metal catalysts. It suggests that higher DEZn flow rate promotes three-dimensional growth mode resulting in increased surface roughness. Therefore, some tip on the ZnO surface could act as nucleation site. In this work, the growth process of our ZnO nanowall networks is said to follow the self-catalyzed growth mechanism under high-DEZn flow rate.  相似文献   

4.
The structure, morphology and surface roughness of Bi12TiO20 (BTO) thin films grown on R-sapphire by pulsed laser deposition (PLD) were studied at different substrate temperatures, target-substrate distances, oxygen pressures and laser-pulse repetition rates. Although the substrate temperature seems to be the most important experimental parameter, the gas pressure and the target–substrate distance played important role on the phase formed and film thickness, with a significant effect of the laser-pulse repetition rate on the films thickness and preferred orientation of the deposited film. Single-phase γ-Bi12TiO20 was obtained on substrates at 650?°C, while several BTO metastable phases were observed in films deposited on substrates at temperatures between 500 and 600?°C. By the first time, thin films of pure and textured δ-Bi12TiO20 were successfully growth on substrates at 450?°C. When annealed, all the films deposited at lower temperatures resulted in the thermodynamically stable γ-Bi12TiO20.  相似文献   

5.
Large-scale uniform one-dimensional ZnO nanostructures were fabricated through thermal evaporation via the vapor solid mechanism on different substrates. The effects of Si (100), Si (111), SiO2 and sapphire substrates with constant oxygen treatment on the morphology and diameter of ZnO nanostructures were investigated. It is found that the type of substrate has a great effect on the shape and diameter of the synthesized nanowires, nanorods, and nanotubes. It is noticed that the size and dimensionality were the most influential parameters on both structural and optical properties of the grown ZnO nanostructures. X-ray diffraction analysis confirms the stability of the wurtzite crystal structure for all grown ZnO nanostructures and the preferred orientation is substrate dependent. The crystallinity as well as the defects within the crystal lattice of the grown ZnO nanostructures was studied through Raman spectroscopy. The photoluminescence spectra of ZnO nanostructures grown on Si (100), Si (111), SiO2 and sapphire substrates showed two peaks at a near-band-edge (NBE) emission in the ultraviolet region and a broad deep-level emission (DLE) around the green emission.  相似文献   

6.
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.  相似文献   

7.
Annealed ZnO thin film at 400 °C for two hours was deposited on a glass substrate by using pulsed laser deposition (PLD). The structural properties of the annealed ZnO thin film were studied by XRD, TEM and SEM. Gas sensing properties for different gases such as H2 and LPG were investigated. Applying XRD the size of the nanocrystals is found to be 10.61 nm. SEM of the thin film consisted of many grains distributed uniformly throughout the surface. An annealed ZnO thin film sensor showed the typical n-type semiconducting behavior in the case of H2 and LGP gases at low and high operating temperature range, respectively. When working at 50 and 140 °C the sensor exhibits very good dynamic response–recovery characteristics to H2 and LGP, respectively. These results along with a simple fabrication process demonstrate that the annealed ZnO thin film at 400 °C for two hours is promising for developing low cost and high performance H2 and LPG sensors. The low cost of the sensor element fabrication, high H2 and LPG sensitivity, fast response and quick recovery make the entire fabrication process a front-runner and cost-effective for the production of annealed ZnO thin film H2 and LPG sensors.  相似文献   

8.
The structure and electrical properties of nanostructured Al-doped ZnO (AZO)/ZnO bilayers grown as potential solar cell electrodes by pulsed laser deposition on (0001) sapphire substrates are investigated. Transmission and scanning electron microscopy and X-ray diffraction show a narrow temperature window around 350–450 °C where nanostructures are formed. 2-D mapping of electrical conductivity by tunnelling atomic force microscopy showed that these nanostructures provided low resistance pathways, but that the overall film resistivity increased for substrate temperatures above 350 °C. The reasons for this are discussed.  相似文献   

9.
Well aligned carbon nanowalls, a few nanometers thick, were fabricated by continuous flow of aluminum acetylacetonate (Al(acac)3) without a catalyst, and independent of substrate material. The nanowalls were grown on Si, and steel substrates using inductively coupled plasma-enhanced chemical vapor deposition. Deposition parameters like flow of argon gas and substrate temperature were correlated with the growth of carbon nanowalls. For a high flow of argon carrier gas, an increased amount of aluminum in the film and a reduced lateral size of the carbon walls were found. The aluminum is present inside the carbon nanowall matrix in the form of well crystallized nanosized Al4C3 precipitates.  相似文献   

10.
《Ceramics International》2020,46(10):15831-15839
The wettability and photocatalytic activity of ZnO nanostructures synthesized by hydrothermal method are reported. XRD, FESEM, XPS, TEM, AFM, Contact angle, UV/Vis and photoluminescence spectroscopy are used to characterize the samples. It is observed that ZnO seeded layer results in the formation of nanorods whereas the absence of seed gives rise to flake like morphology. The XRD indicates that ZnO nanorods have preferred orientation along (002) direction. The formation of ZnO nanorods along (002) direction is due to the existence of nucleation sites resulting from the lattice matching of ZnO seed. Wettability studies show that the ZnO nanorods grown on seeded substrate approaches superhydrophobic state with water contact angle (WCA) of 137.0°. The high contact angle is due to the large surface roughness and low surface energy. The enhanced catalytic performance of ZnO nanorods is attributed to the 1D structure, enhanced roughness, crystallinity and a large number of reactive oxidizing species.  相似文献   

11.
By combining in situ X-ray photoemission spectroscopy, ex situ high resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy, we show that chemical vapor deposition (CVD) on vertically aligned ZnO nanorods can synthesize different carbon nanostructures (CNs), whose morphology is driven by the ZnO nanorods and whose dimensions and structures change as a function of the process temperature. The CNs range from amorphous carbon cups, completely covering the nanorods, to high density one-dimensional carbon nano-dendrites (CNDs), which start to appear like short hairs on the ZnO nanorods. The nanorods are partially etched when the process is done at 630–800 °C, while they are completely etched at temperatures higher than 800 °C. In the latter case, CNDs emerge from a porous carbon sponge formed at the substrate interface but they are preferentially aligned along the location of the pristine ZnO nanorods. When used as a chemiresisitor the CND–ZnO structures have a higher sensitivity to ammonia compared to chemiresistors made by bare ZnO nanorods, to other one-dimensional CNs, like carbon nanotubes or other metal/metal-oxides hybrid CNs.  相似文献   

12.
《Ceramics International》2016,42(15):16927-16934
We investigated the effect of grain size on the piezoelectric properties of ZnO using films of different grain sizes and a fixed thickness of 800 nm deposited on a Si substrate by pulsed laser ablation in the temperature range of 300–700 °C. All of the deposited films have a crystal structure with a c-axis orientation. The grain size of the grown films, characterized by transmission electron microscopy (TEM), increases with the deposition temperature. In contrast, their piezoelectric efficiency (PE, d33), characterized by piezoelectric force microscopy (PFM), was found to initially increase with the deposition temperature up to 500 °C, after which it decreased with further increases in temperature. The maximum PE value is observed for the film deposited at 500 °C with a grain size of approximately 60 nm. The peculiar PE behavior observed was theoretically explained by a competition between the contribution of the c-axis orientation favoring a larger d33 value due to the enhanced static asymmetry and the strong grain size effect that influences the piezoelectric polarization as a result of domain motion.  相似文献   

13.
Nano-ZnO synthesized by hydrothermal reaction were embedded in poly(methyl methacrylate-co-butyl acrylate) matrix (P(MMA-co-BA)) to produce the nano-ZnO/P(MMA-co-BA) nanocomposites via in-situ polymerization at 85 °C. The nano-ZnO/P(MMA-co-BA) nanocomposites were hydrothermal treated in the mixture solution of Zn(NO3)2·6H2O and NH4OH at 90 °C under various pH (i.e.7, 8, 9 and 10) and treatment time (i.e. 4, 6, 8, 10, 12 and 24 hrs). The nano-ZnO could act as seeding particles for hydrothermal growth of ZnO nanostructures on the surfaces of nanocomposites. The higher pH of basic solutions used in the hydrothermal treatment, the higher amount of Zn(OH)42−nuclei would be created, leading to a modification of the ZnO morphology from nano-nuclei to nanorods, nanorods bushes (flower-like nanostructure) and nanofibers with nanospine. The increase of hydrothermal treatment time resulted in the increases of amount and length of multidirectional grown ZnO nanorods. Data of the contact angle measurement exhibited the increase of hydrophobicity of the nano-ZnO/P(MMA-co-BA) nanocomposites after hydrothermal growth of ZnO nanostructures. The nanocomposites treated at pH = 10 for 24 hrs shows the highest hydrophobicity with the contact angle of 121˚. In addition, the thermal stability of the nano-ZnO/P(MMA-co-BA) could be improved by the formation of hydrothermal grown ZnO nanostructure on the nanocomposite surface.  相似文献   

14.
In order to fabricate tetragonal yttria stabilized zirconia samples with large grain size, 3 mol% Y2O3 doped zirconia thin films were grown on (0001) α-Al2O3 substrate by pulsed laser deposition (PLD) followed by subsequent high temperature annealing. The thin film samples were annealed at 1200°C, 1250°C, 1300°C, and 1350°C in order to obtain larger grain size without Y segregation. The microstructure and chemical composition of these annealed films were analyzed using atomic force microscopy, scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The as-grown thin film was found to be composed of [111]-oriented grains of ∼100 nm connected with small-angle tilt boundaries. Based on analysis of annealed thin films, it was revealed that grain growth of tetragonal zirconia occurred anisotropically. Cross section scanning transmission electron microscopy observations revealed that such grain growth behavior is affected by the step-terrace structures of the sapphire substrate. Energy-dispersive X-ray spectroscopy showed that Y was found to distribute almost uniformly below 1300°C but to segregate at the grain boundaries at 1350°C. As a conclusion, the 1300°C-annealed sample shows the largest grain size with homogeneous Y distributions.  相似文献   

15.
《Ceramics International》2017,43(2):1710-1715
Zinc oxide (ZnO), a wide band-gap semiconductor, has received a great interest due to its potential applications in various fields both as nanostructures and as sintered compacts. In this study, we report on the synthesis of the ZnO nanostructures and facilitation of their sintering for the production of fine-grained dense compacts. The facile synthesis of gram scale ZnO nanostructures was achieved by thermal decomposition of zinc acetate dihydrate (Zn(Ac)2·2H2O) or Zn(Ac)2·2H2O/graphite mixtures at 300 °C for 12 h. Thermal decomposition of Zn(Ac)2 resulted in the formation of mostly ZnO nanoparticles with wurtzite structure along with ZnO nanorods, while the addition of graphite significantly promoted the growth of ZnO nanowires. Microstructural and phase properties of the obtained ZnO nanostructures were determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) techniques, all of which revealed the successful synthesis of high quality ZnO nanostructures. In addition to synthesis and characterization of the ZnO nanostructures, we report on the enhancement of their sinterability by a subsequent cryogenic milling for a short duration of 5 min. As a result of the applied cryo-milling, fabrication of highly dense (96.2%) sintered compacts with fine grain sizes (572 nm) could be achieved after pressureless sintering at 1000 °C for 2 h.  相似文献   

16.
《云南化工》2018,(12):26-27
通过恒温水浴法制备了ZnO纳米墙,以ZnO纳米墙为限域生长模板,通过化学气相沉积法将固态碳源(樟脑)气化沉积在ZnO纳米墙上形成石墨烯@ZnO纳米墙复合薄膜。制备的石墨烯@ZnO纳米墙复合薄膜结构比较稳定。与传统的ZnO/石墨烯材料相比,材料垂直生长,具有更大的比表面积,不易发生团聚等优点。  相似文献   

17.
《Ceramics International》2020,46(14):21989-21994
SrTiO3 films were deposited using pulsed laser deposition (PLD) at substrate temperatures ranging from 300 °C to 700 °C on a CeO2 layer and nano-Y0.5Gd0.5Ba2Cu3O7-δ buffered CeO2 layer, respectively. The effect of the substrate temperature and substrate film on the crystallinity, preferred orientation, and surface topography were investigated. On the CeO2 layer, there were two preferred SrTiO3 orientations, (00l) and (110). By introducing a nano-Y0.5Gd0.5Ba2Cu3O7-δ layer, pure c-axis oriented SrTiO3 films were obtained at each substrate temperature. Based on the lattice mismatch, three kinds of growth modes of SrTiO3 grains were proposed that were proved by scanning electron microscopy (SEM).  相似文献   

18.
Aluminum gallium oxide (AGO) films were prepared on conventional c-plane sapphire by pulsed laser deposition (PLD). In the current PLD-AGO studies, target composition or growth temperature is usually the main deposition variable, and the other growth conditions are fixed. This would make it difficult to fully understand the theory and characterization of AGO films. In this study, several growth parameters such as target composition, gas atmosphere, laser repetition frequency, growth pressure, and substrate temperature (Ts) were all modulated to realize and optimize the AGO growth. When the (AlxGa1-x)2O3 target with the Al content larger than 20?at% was used, a serious target poisoning phenomenon occurred, leading to the extremely unstable growth rate. In comparison to the AGO film grown with argon atmosphere, the higher transparency was reached in the film prepared with oxygen atmosphere due to the relative abundance of oxygen. Because of the homogeneous oxygen reduction, the AGO film with the higher crystal quality was obtained at a higher laser repetition frequency. With an increment of growth pressure, the Al content of AGO film was increased. The growth of AGO film at the higher Ts would cause the higher bandgap value, smoother surface, and growth rate degradation. Additionally, the crystal quality of AGO film can be also improved both by increasing the growth pressure and Ts. The better characterization can be reached in the AGO film grown using the (Al0.05Ga0.95)2O3 target with oxygen atmosphere at the working pressure of 2?×?10?1 Torr, the laser repetition frequency of 10?Hz, and the Ts of 800?°C. When the metal-semiconductor-metal photodetector fabricated with this AGO active layer, the best performance including the photocurrent of 7.56?×?10?8 A, dark current of 1.59?×?10–12 A, and photo/dark current ratio of 4.76?×?104 (@5?V and 240?nm) were achieved.  相似文献   

19.
The polymeric semiconducting carbon films are grown on silicon and quartz substrates by excimer (XeCl) pulsed laser deposition (PLD) technique using fullerene C60 precursor. The substrate temperature is varied up to 300 °C. The structure and optical properties of the films strongly depend on the substrate temperature. The grain size is increased and uniform polymeric film with improved morphology at higher temperature is observed. The Tauc gap is about 1.35 eV for the film deposited at 100°C and with temperature the gap is decreased upto 1.1 eV for the film deposited at 250 °C and increased to about 1.4 eV for the film deposited at 300 °C. The optical absorption properties are improved with substrate temperature. Raman spectra show the presence of both G peak and D peak and are peaked at about 1590 cm 1 and 1360 cm 1, respectively for the film deposited at 100 °C. The G peak position remains almost unchanged while D peak has changed only a little with temperature might be due to its better crystalline structure compared to the typical amorphous carbon films and might show interesting in device such as, optoelectronic applications.  相似文献   

20.
The 1D ZnO nanorods (NR's) were grown with Zinc (Zn) ion precursor concentration variation on seed layer glass substrate by the low temperature hydrothermal method and utilized for nitrogen dioxide (NO2) gas sensing application. Zn ion precursor concentration varied as 0.02, 0.03, 0.04, 0.05 and 0.06 M and thin films were characterized for structural, morphological, optical, electrical, surface defect study and gas sensing properties. All the film showed dominant orientation along the (002) direction, the intensity of the peak vary with the length of the nanorods. SEM cross images confirmed that nanorods had vertical alignment perpendicular to the plane of the substrate surface. The PL intensity of oxygen vacancy related defects for prepared samples was found to be linearly proportional to gas sensing phenomena. This result in good agreement with the theoretical postulation that, oxygen vacancies plays the important role for adsorption sites to NO2 molecule. The gas sensing performance was studied as a function of operating temperature, Zn ion precursor concentration variation, and gas concentration. The maximum gas response is 113.32–100 ppm NO2 gas at 150 °C for 0.05 M sample out of all prepared samples. Additionally, ZnO thin film sensor has potential to detect NO2 as low as 5 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号